Skip to:Bottom
|
Content
Cover image for Multivariate data analysis
Title:
Multivariate data analysis
ISBN:
9780138948580
Edition:
4th ed.
Publication Information:
New Jersey : Prentice Hall , 1998.
Physical Description:
730 s. ; 28 sm.
Abstract:
Multıvarıate data analysıs<br>Fıfth edıtıon<br>Haır-anderson-tatham-black<br><br><br><br>Content<br>Preface................................................................. xvii<br>Chapter 1 Introduction ............................................ ı<br>What Is Multivariate Analysis? ........................................ 3<br>Impact of the Computer Revolution .................................... 5<br>Multivariate Analysis Defined ......................................... 6<br>Some Basic Concepts of Multivariate Analysis ........................... 6<br>The Variate .................................................... 7<br>Measurement Scales ............................................ 7<br>Measurement Error and Multivariate Measurement ..................... 9<br>Statistical Significance versus Statistical Power ........................ 10<br>Types of Multivariate Techniques ...................................... 13<br>Principal Components and Common Factor Analysis ................... 14<br>Multiple Regression ............................................. 14<br>Multiple Discriminant Analysis ..................................... 14<br>Multivariate Analysis of Variance and Covariance ...................... 15<br>Conjoint Analysis ............................................... 15<br>Canonical Correlation ............................................ 15<br>Cluster Analysis ................................................ 15<br>Multidimensional Scaling ......................................... 16<br>Correspondence Analysis ......................................... 16<br>Linear Probability Models ......................................... 16<br>Structural Equation Modeling ...................................... 17<br>Other Emerging Multivariate Techniques ............................. 17<br>A Classification of Multivariate Techniques .............................. 18<br>Guidelines for Multivariate Analyses and Interpretation .................... 22<br>Establish Practical Significance as Well as Statistical Significance ......... 22<br>Sample Size Affects All Results .................................... 23<br>Know Your Data ................................................ 23<br>Strive for Model Parsimony ....................................... 24<br>Look at Your Errors .............................................. 24<br>Validate Your Results ............................................ 24<br>A Structured Approach to Multivariate Model Building .................... 25<br>Stage 1: Define the Research Problem, Objectives, and Multivariate<br>Technique to Be Used ......................................... 25<br>Stage 2: Develop the Analysis Plan ................................. 26<br>Stage 3: Evaluate the Assumptions Underlying the Multivariate Technique . . 26<br>Stage 4: Estimate the Multivariate Model and Assess Overall Model Fit .... 26<br>Stage 5: Interpret the Variate(s) .................................... 27<br>Stage 6: Validate the Multivariate Model ............................. 27<br>A Decision Flowchart ............................................ 27<br>Databases ......................................................... 27<br>Primary Database ............................................... 28<br>Other Databases ............................................... 30<br>Organization of the Remaining Chapters ................................ 30<br>Summary o Questions o References .................................... 31<br> <br>Section 1 o Preparing for a Multivariate Analysis ............. 33<br>Chapter 2 Examining Your Data ................................. 35<br>Introduction ........................................................ 39<br>Graphical Examination of the Data ..................................... 40<br>The Nature of the Variable: Examining the Shape of the Distribution ....... 40<br>Examining the Relationship between Variables ........................ 42<br>Examining Group Differences ...................................... 42<br>Multivariate Profiles ............................................. 44<br>Summary ..................................................... 46<br>Missing Data ....................................................... 46<br>A Simple Example of a Missing Data Analysis ........................ 47<br>Understanding the Reasons Leading to Missing Data ................... 48<br>Examining the Patterns of Missing Data ............................. 49<br>Diagnosing the Randomness of the Missing Data Process ............... 50<br>Approaches for Dealing with Missing Data .............................. 51<br>Use of Observations with Complete Data Only ........................ 51<br>Delete Case(s) and/or Variable(s) .................................. 51<br>Imputation Methods ............................................. 52<br>Model-Based Procedures ......................................... 55<br>An Illustration of Missing Data Diagnosis ............................. 56<br>A Recap of the Missing Value Analysis .............................. 62<br>Summary ..................................................... 64<br>Outliers............................................................ 64<br>Detecting Outliers ............................................... 65<br>Outlier Description and Profiling .................................... 66<br>Retention or Deletion of the Outlier ................................. 66<br>An Illustrative Example of Analyzing Outliers .......................... 66<br>Testing the Assumptions of Multivariate Analysis ........................ 70<br>Assessing Individual Variables versus the Variate ...................... 70<br>Normality ..................................................... 70<br>Homoscedasticity ............................................... 73<br>Linearity ...................................................... 75<br>Absence of Correlated Errors ...................................... 75<br>Data Transformations ............................................ 76<br>An Illustration of Testing the Assumptions Underlying<br>Multivariate Analysis ........................................... 78<br>Homoscedasticity ............................................... 81<br>Incorporating Nonmetric Data with Dummy Variables ..................... 83<br>Summary o Questions o References .................................... 85<br>Chapter 3 Factor Analysis ........................................ 87<br>What Is Factor Analysis? ............................................. 90<br>A Hypothetical Example of Factor Analysis .............................. 92<br> <br>Factor Analysis Decision Process ..................................... 93<br>Stage 1: Objectives of Factor Analysis ............................... 95<br>Stage 2: Designing a Factor Analysis ............................... 97<br>Stage 3: Assumptions in Factor Analysis ............................. 99<br>Stage 4: Deriving Factors and Assessing Overall Fit .................... 100<br>Stage 5: Interpreting the Factors ................................... 106<br>Stage 6: Validation of Factor Analysis ............................... 114<br>Stage 7: Additional Uses of Factor Analysis Results .................... 115<br>An Illustrative Example ............................................... 120<br>Stage 1: Objectives of Factor Analysis ............................... 120<br>Stage 2: Designing a Factor Analysis ............................... 121<br>Stage 3: Assumptions in Factor Analysis ............................. 121<br>Component Factor Analysis: Stages 4 through 7 ....................... 123<br>Common Factor Analysis: Stages 4 and 5 ............................ 131<br>A Managerial Overview of the Results ............................... 134<br>Summary o Questions o References o Annotated Readings ................. 135<br>Section 2 o Dependence Techniques ............................

139<br>Chapter 4 Multiple Regression Analysis ........................ 141<br>What Is Multiple Regression Analysis? ................................. 148<br>An Example of Simple and Multiple Regression .......................... 149<br>Setting a Baseline: Prediction without an Independent Variable ........... 150<br>Prediction Using a Single Independent Variable-Simple Regression ....... 151<br>Prediction Using Several Independent Variables-Multiple Regression ...... 156<br>Summary ..................................................... 158<br>A Decision Process for Multiple Regression Analysis ..................... 158<br>Stage 1: Objectives of Multiple Regression .............................. 159<br>Research Problems Appropriate for Multiple Regression ................ 159<br>Specifying a Statistical Relationship ................................. 162<br>Selection of Dependent and Independent Variables .................... 162<br>Stage 2: Research Design of a Multiple Regression Analysis ............... 164<br>Sample Size ................................................... 164<br>Fixed versus Random Effects Predictors ............................. 166<br>Creating Additional Variables ...................................... 166<br>Stage 3: Assumptions in Multiple Regression Analysis .................... 172<br>Assessing Individual Variables versus the Variate ...................... 172<br>Linearity of the Phenomenon ...................................... 173<br>Constant Variance of the Error Term ................................ 174<br>Independence of the Error Terms ................................... 175<br>Normality of the Error Term Distribution .............................. 175<br>Summary ..................................................... 176<br>Stage 4: Estimating the Regression Model and Assessing Overall Model Fit . . 176<br>General Approaches to Variable Selection ............................ 176<br>Testing the Regression Variate for Meeting the Regression Assumptions .... 180<br>Examining the Statistical Significance of Our Model .................... 181<br>Identifying Influential Observations .................................. 184<br> <br>Stage 5: Interpreting the Regression Variate ............................. 187<br>Using the Regression Coefficients .................................. 187<br>Standardizing the Regression Coefficients: Beta Coefficients ............. 188<br>Assessing Multicollinearity ........................................ 188<br>Stage 6: Validation of the Results ..................................... 194<br>Additional or Split Samples ....................................... 194<br>Calculating the PRESS Statistic .................................... 194<br>Comparing Regression Models .................................... 195<br>Predicting with the Model ......................................... 195<br>Illustration of a Regression Analysis ................................... 195<br>Stage 1: Objectives of Multiple Regression ........................... 196<br>Stage 2: Research Design of a Multiple Regression Analysis ............. 196<br>Stage 3: Assumptions in Multiple Regression Analysis .................. 196<br>Stage 4: Estimating the Regression Model and Assessing Overall Model Fit . 197<br>Stage 5: Interpreting the Regression Variate .......................... 207<br>Stage 6: Validating the Results .................................... 209<br>Evaluating Alternative Regression Models ............................ 210<br>A Managerial Overview of the Results ............................... 213<br>Summary o Questions o References o Annotated Articles .................. 213<br>Appendix 4A: Advanced Diagnostics<br>for Multiple Regression Analysis .............................. 217<br>Assessing Multicollinearity ........................................... 220<br>A Two-Part Process ............................................. 220<br>An Illustration of Assessing Multicollinearity ........................... 221<br>Identifying Influential Observations .................................... 221<br>Step 1: Examining Residuals ...................................... 222<br>Step 2: Identifying Leverage Points from the Predictors ................. 223<br>Step 3: Single-Case Diagnostics Identifying Influential Observations ....... 224<br>Step 4: Selecting and Accommodating Influential Observations ........... 225<br>Example from the HATCO Database ................................ 226<br>Overview ...................................................... 236<br>Summary o Questions o References .................................... 237<br>Chapter 5 Multiple Discriminant Analysis ‘ o -o<br>and Logistic Regression .................................... ... 239<br>What Are Discriminant Analysis and Logistic Regression? ................. 244<br>Analogy with Regression and MANOVA ................................. 246<br>Hypothetical Example of Discriminant Analysis .......................... 246<br>A Two-Group Discriminant Analysis: Purchasers versus Nonpurchasers .... 247<br>A Geometric Representation of the Two-Group Discriminant Function ...... 250<br>A Three-Group Example of Discriminant Analysis: Switching Intentions ..... 251<br>The Decision Process for Discriminant Analysis ......................... 255<br>Stage 1: Objectives of Discriminant Analysis ............................ 256<br>Stage 2: Research Design for Discriminant Analysis ...................... 256<br>Selection of Dependent and Independent Variables .................... 257<br>Sample Size ................................................... 258<br>Division of the Sample ........................................... 258<br> <br>Stage 3: Assumptions of Discriminant Analysis .......................... 259<br>Stage 4: Estimation of the Discriminant Model and Assessing Overall Fit .... 260<br>Computational Method ........................................... 260<br>Statistical Significance ........................................... 262<br>Assessing Overall Fit ............................................ 263<br>Casewise Diagnostics ............................................ 270<br>Summary ..................................................... 271<br>Stage 5: Interpretation of the Results ................................... 272<br>Discriminant Weights ............................................ 272<br>Discriminant Loadings ........................./................. 272<br>Partial F Values ................................................ 272<br>Interpretation of Two or More Functions .............................. 273<br>Which Interpretive Method to Use? ................................. 274<br>Stage 6: Validation of the Results ...................................... 275<br>Split-Sample or Cross-Validation Procedures ......................... 275<br>Profiling Group Differences ....................................... 276<br>Logistic Regression: Regression with a Binary Dependent Variable ......... 276<br>Representation of the Binary Dependent Variable ...................... 277<br>Estimating the Logistic Regression Model ............................ 278<br>Interpreting the Coefficients ....................................... 278<br>A Two-Group Illustrative Example ...................................... 281<br>Stage 1: Objectives of Discriminant Analysis .......................... 281<br>Stage 2: Research Design for Discriminant Analysis .................... 282<br>Stage 3: Assumptions of Discriminant Analysis ........................ 282<br>Stage 4: Estimation of the Discriminant Model and Assessing Overall Fit ... 283<br>Stage 5: Interpretation of the Results ............................... 293<br>Stage 6: Validation of the Results .................................. 295<br>A Managerial Overview .......................................... 295<br>A Three-Group Illustrative Example ....................................

296<br>Stage 1: Objectives of Discriminant Analysis .......................... 296<br>Stage 2: Research Design for Discriminant Analysis .................... 296<br>Stage 3: Assumptions of Discriminant Analysis ........................ 296<br>Stage 4: Estimation of the Discriminant Model and Assessing Overall Fit ... 297<br>Stage 5: Interpretation of Three-Group Discriminant Analysis Results ...... 309<br>Stage 6: Validation of the Discriminant Results ........................ 313<br>A Managerial Overview .......................................... 313<br>An Illustrative Example of Logistic Regression .......................... 314<br>Stages 1, 2, and 3: Research Objectives, Research Design,<br>and Statistical Assumptions ................................. 314<br>Stage 4: Estimation of the Logistic Regression Model<br>and Assessing Overall Fit ...................................... 315<br>Stage 5: Interpretation of the Results ............................ 320<br>Stage 6: Validation of the Results .................................. 321<br>A Managerial Overview .......................................... 321<br>Summary o Questions o References o Annotated Articles .................. 321<br>Chapter 6 Multivariate Analysis of Variance ................... 326<br>What Is Multivariate Analysis of Variance? .............................. 331<br>Univariate Procedures for Assessing Group Differences ................. 331<br>Multivariate Analysis of Variance ................................... 333<br> <br>Differences between MANOVA and Discriminant Analysis .................. 336<br>A Hypothetical Illustration of MANOVA ................................. 336<br>When Should We Use MANOVA?....................................... 339<br>Control of Experimentwide Error Rate ............................... 339<br>Differences among a Combination of Dependent Variables ............... 339<br>A Decision Process for MANOVA ...................................... 339<br>Stege 1: Objectives of MANOVA ....................................... 341<br>Types of Multivariate Questions Suitable for MANOVA .................. 341<br>Stage 2: Issues in the Research Design of MANOVA ...................... 342<br>Sample Size Requirements-Overall and by Group .................... 342<br>Factorial Designs-Two or More Treatments .......................... 342<br>Using Covariates-ANCOVA and MANCOVA ......................... 346<br>Stage 3: Assumptions of ANOVA and MANOVA .......................... 347<br>Independence .................................................. 348<br>Equality of Variance-Covariance Matrices ............................ 348<br>Normality ..................................................... 349<br>Linearity and Multicollinearity among the Dependent Variables ............ 349<br>Sensitivity to Outliers ............................................ 349<br>Stage 4: Estimation of the MANOVA Model and Assessing Overall Fit ....... 350<br>Criteria for Significance Testing .................................... 351<br>Statistical Power of the Multivariate Tests ............................ 352<br>Stage 5: Interpretation of the MANOVA Results .......................... 354<br>Evaluating Covariates ............................................ 354<br>Assessing the Dependent Variate .................................. 355<br>Identifying Differences between Individual Groups ..................... 356<br>Stage 6: Validation of the Results ...................................... 357<br>Summary ..................................................... 358<br>Example 1: Difference between Two Independent Groups .................. 358<br>A Univariate Approach: The t Test .................................. 359<br>A Multivariate Approach: Hotelling’s T2 .............................. 361<br>Example 2: Difference between k Independent Groups .................... 366<br>A Univariate Approach: /(-Groups ANOVA ............................ 366<br>A Multivariate Approach: /(-Groups MANOVA ......................... 369<br>Example 3: A Factorial Design for MANOVA with Two Independent Variables . . 374<br>Stage 1: Objectives of the MANOVA ................................ 374<br>Stage 2: Research Design of the MANOVA ........................... 375<br>Stage 3: Assumptions in MANOVA ................................. 375<br>Stage 4: Estimation of the MANOVA Model and Assessing Overall Fit ...... 375<br>Stage 5: Interpretation of the Results ............................... 379<br>A Managerial Overview of the Results .................................. 381<br>Summary o Questions o References o Annotated Articles .................. 383<br>Chapter 7 Conjoint Analysis ...................................... 387<br>What Is Conjoint Analysis? ........................................... 392<br>A Hypothetical Example of Conjoint Analysis ............................ 393<br>An Empirical Example ........................................... 394<br>The Managerial Uses of Conjoint Analysis .............................. 398<br> <br>Comparing Conjoint Analysis with Other Multivariate Methods ............. 399<br>Compositional versus Decompositional Techniques ..................... 399<br>Specifying the Conjoint Variate .................................... 399<br>Separate Models for Each Individual ................................ 399<br>Types of Relationships ........................................... 400<br>Designing a Conjoint Analysis Experiment .............................. 400<br>Stage 1: The Objectives of Conjoint Analysis ............................ 403<br>Defining the Total Utility of the Object ............................... 403<br>Specifying the Determinant Factors ................................. 403<br>Stage 2: The Design of a Conjoint Analysis .............................. 404<br>Selecting a Conjoint Analysis Methodology ........................... 404<br>Designing Stimuli: Selecting and Defining Factors and Levels ............ 405<br>Specifying the Basic Model Form ................................... 408<br>Data Collection ................................................. 412<br>Stage 3: Assumptions of Conjoint Analysis ............................. 418<br>Stage 4: Estimating the Conjoint Model and Assessing Overall Fit .......... 418<br>Selecting an Estimation Technique .................................. 419<br>Evaluating Model Goodness-of-Fit .................................. 420<br>Stage 5: Interpreting the Results ....................................... 420<br>Aggregate versus Disaggregate Analysis ............................. 420<br>Assessing the Relative Importance of Attributes ....................... 421<br>Stage 6: Validation of the Conjoint Results .............................. 421<br>Managerial Applications of Conjoint Analysis ............................ 422<br>Segmentation .................................................. 422<br>Profitability Analysis ............................................. 422<br>Conjoint Simulators ............................................. 422<br>Alternative Conjoint Methodologies .................................... 423<br>Adaptive Conjoint: Conjoint with a Large Number of Factors ............. 424<br>Overview of the Three Conjoint Methodologies ........................ 429<br>An Illustration of Conjoint Analysis .................................... 429<br>Stage 1: Objectives of the Conjoint Analysis .......................... 430<br>Stage 2: Design of the Conjoint Analysis ............................. 430<br>Stage 3: Assumptions in Conjoint Analysis ........................... 432<br>Stage 4: Estimating the Conjoint Model and Assessing Overall Model Fit . . . 432<br>Stage 5: Interpreting the Results ................................... 432<br>Stage 6: Validation of the Results .................................. 434<br>A Managerial Application: Use of a Choice Simulator ...................

435<br>Summary o Questions o References o Annotated Articles .................. 436<br>Chapter 8 Canonical Correlation Analysis ...................... 442<br>What Is Canonical Correlation? ........................................ 444<br>Hypothetical Example of Canonical Correlation .......................... 444<br>Analyzing Relationships with Canonical Correlation ...................... 445<br>Stage 1: Objectives of Canonical Correlation Analysis .................... 447<br>Stage 2: Designing a Canonical Correlation Analysis ..................... 447<br>Stage 3: Assumptions in Canonical Correlation .......................... 448<br>Stage 4: Deriving the Canonical Functions and Assessing Overall Fit ....... 448<br>Deriving Canonical Functions ...................................... 449<br>Which Canonical Functions Should Be Interpreted? .................... 450<br> <br>Stage 5: Interpreting the Canonical Variate .............................. 453<br>Canonical Weights .............................................. 453<br>Canonical Loadings ............................................. 453<br>Canonical Cross-Loadings ........................................ 454<br>Which Interpretation Approach to Use ............................... 454<br>Stage 6: Validation and Diagnosis ...................................... 454<br>An Illustrative Example ............................................... 455<br>Stage 1: Objectives of Canonical Correlation Analysis .................. 455<br>Stages 2 and 3: Designing a Canonical Correlation Analysis and Testing the<br>Assumptions ................................................ 455<br>Stage 4: Deriving the Canonical Functions and Assessing Overall Fit ...... 456<br>Stage 5: Interpreting the Canonical Variates .......................... 457<br>Stage 6: Validation and Diagnosis .................................. 460<br>A Managerial Overview ............................................... 461<br>Summary o Questions o References o Annotated Articles .................. 462<br>.^ o " ....<br>Section 3 o Interdependence Techniques ....................... 467<br>Chapter 9 Cluster Analysis ....................................... 469<br>What Is Cluster Analysis? ............................................ 473<br>How Does Cluster Analysis Work? ..................................... 474<br>Measuring Similarity ............................................. 476<br>Forming Clusters ............................................... 476<br>Determining the Number of Clusters in the Final Solution ................ 477<br>Cluster Analysis Decision Process ..................................... 479<br>Stage 1: Objectives of Cluster Analysis ................................. 481<br>Selection of Clustering Variables ................................... 481<br>Stage 2: Research Design in Cluster Analysis ........................... 482<br>Detecting Outliers ............................................... 482<br>Similarity Measures ............................................. 483<br>Standardizing the Data ........................................... 489<br>Stage 3: Assumptions in Cluster Analysis ............................... 490<br>Representativeness of the Sample ................................. 490<br>Impact of Multicollinearity ......................................... 491<br>Stage 4: Deriving Clusters and Assessing Overall Fit ..................... 491<br>Clustering Algorithms ............................................ 491<br>How Many Clusters Should Be Formed? ............................. 499<br>Should the Cluster Analysis Be Respecified? ......................... 499<br>Stage 5: Interpretation of the Clusters .................................. 500<br>Stage 6: Validation and Profiling of the Clusters .......................... 500<br>Validating the Cluster Solution ..................................... 501<br>Profiling the Cluster Solution ...................................... 501<br>Summary of the Decision Process ..................................... 502<br> <br>An Illustrative Example ............................................... 502<br>Stage 1: Objectives of the Cluster Analysis ........................... 502<br>Stage 2: Research Design of the Cluster Analysis ..................... 502<br>Stage 3: Assumptions in Cluster Analysis ............................ 503<br>Stage 4: Deriving Clusters and Assessing Overall Fit ................... 503<br>Stage 5: Interpretation of the Clusters ............................... 509<br>Stage 6: Validation and Profiling of the Clusters ....................... 512<br>A Managerial Overview .......................................... 515<br>Summary o Questions o References o Annotated Articles .................. 515<br>Chapter 10 Multidimensional Scaling ........................... 519<br>What Is Multidimensional Scaling? ..................................... 522<br>A Simplified Look at How MDS Works .................................. 524<br>Comparing MDS to Other Interdependence Techniques .................... 526<br>Individual as the Unit of Analysis ................................... 527<br>Lack of a Variate ............................................... 527<br>A Decision Framework for Perceptual Mapping .......................... 527<br>Stage 1: Objectives of MDS ........................................... 527<br>Key Decisions in Setting Objectives ................................. 529<br>Stage 2: Research Design of MDS ..................................... 531<br>Selection of Either a Decompositional (Attribute-Free) or Compositional<br>(Attribute-Based) Approach ..................................... 531<br>Objects: Their Number and Selection ................................ 533<br>Nonmetric versus Metric Methods .................................. 534<br>Collection of Similarity or Preference Data ........................... 534<br>Stage 3: Assumptions of MDS Analysis ................................. 536<br>Stage 4: Deriving the MDS Solution and Assessing Overall Fit ............. 537<br>Determining an Object’s Position in the Perceptual Map ................. 537<br>Selecting the Dimensionality of the Perceptual Map .................... 539<br>Incorporating Preferences into MDS ................................ 541<br>Stage 5: Interpreting the MDS Results .................................. 545<br>Identifying the Dimensions ........................................ 546<br>Stage 6: Validating the MDS Results .................................... 547<br>Correspondence Analysis ............................................ 548<br>A Simple Example of CA ......................................... 548<br>Stage 1: Objectives of CA ........................................ 552<br>Stage 2: Research Design of CA ................................... 552<br>Stage 3: Assumptions in CA ...................................... 553<br>Stage 4: Deriving CA Results and Assessing Overall Fit ................ 553<br>Stage 5: Interpretation of the Results ............................... 553<br>Stage 6: Validation of the Results .................................. 554<br>Overview of Correspondence Analysis ............................... 554<br> <br>Illustration of MDS and CA ........................................... 555<br>Stage 1: Objectives of Perceptual Mapping ........................... 555<br>Stage 2: Research Design of the Perceptual Mapping Study ............. 555<br>Stage 3: Assumptions in Perceptual Mapping ......................... 556<br>Multidimensional Scaling: Stages 4 and 5 ............................ 556<br>Overview of the Decompositional Results ............................ 564<br>Correspondence Analysis: Stages 4 and 5 ........................... 565<br>Stage 6: Validation of the Results .................................. 569<br>A Managerial Overview of MDS Results .............................

570<br>Summary o Questions o References o Annotated Articles .................. 570<br>Section 4 Advanced and Emerging Techniques ................ 575<br>Chapter 11 Structural Equation Modeling ...................... 577<br>What Is Structural Equation Modeling? ................................. 584<br>Accommodating Multiple Interrelated Dependence Relationships .......... 584<br>Incorporating Variables that We Do Not Measure Directly ................ 585<br>A Simple Example of SEM ............................................ 586<br>The Research Question .......................................... 587<br>Setting Up the Structural Equation Model for Path Analysis .............. 587<br>An Application of Path Analysis .................................... 588<br>Summary ..................................................... 589<br>The Role of Theory in Structural Equation Modeling ...................... 589<br>Developing a Modeling Strategy ....................................... 590<br>Confirmatory Modeling Strategy .................................... 590<br>Competing Models Strategy ....................................... 591<br>Model Development Strategy ...................................... 592<br>Stages in Structural Equation Modeling ................................. 592<br>Stage 1: Developing a Theoretically Based Model ...................... 592<br>Stage 2: Constructing a Path Diagram of Causal Relationships ........... 594<br>Stage 3: Converting the Path Diagram into a Set of Structural<br>and Measurement Models ...................................... 596<br>Stage 4: Choosing the Input Matrix Type and Estimating the<br>Proposed Model .............................................. 601<br>Stage 5: Assessing the Identification of the Structural Model ............. 608<br>Stage 6: Evaluating Goodness-of-Fit Criteria .......................... 610<br>Stage 7: Interpreting and Modifying the Model ........................ 614<br>A Recap of the Seven-Stage Process ............................... 616<br>Two Illustrations of Structural Equation Modeling ........................ 616<br>Confirmatory Factor Analysis ......................................... 616<br>Stage 1: Developing a Theoretically Based Model ...................... 617<br>Stage 2: Constructing a Path Diagram of Causal Relationships ........... 617<br>Stage 3: Converting the Path Diagram into a Set of Structural and<br>Measurement Models .......................................... 618<br>Stage 4: Choosing Input Matrix Type and Estimating the Proposed Model .. . 619<br>Stage 5: Assessing the Identification of the Structural Model ............. 619<br>Stage 6: Evaluating Goodness-of-Fit Criteria .......................... 620<br>Stage 7: Interpreting and Modifying the Model ........................ 624<br>Higher-Order Factor Analysis Models ............................... 625<br>Summary ..................................................... 627<br> <br>Estimating a Path Model with Structural Equation Modeling ................ 627<br>Stage 1: Developing a Theoretically Based Model ...................... 628<br>Stage 2: Constructing a Path Diagram of Causal Relationships ........... 629<br>Stage 3: Converting the Path Diagram into a Set of Structural and<br>Measurement Models .......................................... 629<br>Stage 4: Choosing Input Matrix Type and Estimating the Proposed Model .. . 631<br>Stage 5: Assessing the Identification of the Structural Model ............. 631<br>Stage 6: Evaluating Goodness-of-Fit Criteria .......................... 633<br>Stage 7: Interpreting and Modifying the Model ........................ 639<br>Overview of the Seven-Stage Process ............................... 641<br>Summary o Questions ................................................ 644<br>Appendix 11A: A Mathematical<br>Representation in LISREL Notation ........................... 645<br>LISREL Notation .................................................... 645<br>From a Path Diagram to LISREL Notation ............................... 648<br>Constructing Structural Equations from the Path Diagram ............... 648<br>Summary .......................................................... 652<br>Appendix 11B: Overall Goodness-of-Fit<br>Measures for Structural Equation Modeling .................. 653<br>Measures of Absolute Fit ............................................. 654<br>Likelihood-Ratio Chi-Square Statistic ................................ 654<br>Noncentrality and Scaled Noncentrality Parameters .................... 655<br>Goodness-of-Fit Index ........................................... 655<br>Root Mean Square Residual ...................................... 656<br>Root Mean Square Error of Approximation ........................ 656<br>Expected Cross-Validation Index ................................... 656<br>Cross-Validation Index ........................................... 656<br>Incremental Fit Measures ............................................. 657<br>Adjusted Goodness-of-Fit Index .................................... 657<br>Tucker-Lewis Index ............................................. 657<br>Normed Fit Index ............................................... 657<br>Other Incremental Fit Measures .................................... 657<br>Parsimonious Fit Measures ........................................... 658<br>Parsimonious Normed Fit Index .................................... 658<br>Parsimonious Goodness-of-Fit Index ................................ 658<br>Normed Chi-Square ........................................ 658<br>Akaike Information Criterion ....................................... 659<br>A Review of the Structural Model Goodness-of-Fit Measures ............... 659<br>Summary o References o Annotated Articles ............................. 659<br>Chapter 12 Emerging Techniques in Multivariate Analysis ... 667<br>Introduction ........................................................ 671<br>The Information Avalanche ........................................ 671<br>Analysis without Statistical Inference ................................ o" 672<br>Topics Covered in this Chapter .................................... 672<br> <br>Data Warehousing and Data Mining .................................... 673<br>What Are Data Warehousing and Data Mining? ....................... 674<br>Fundamental Concepts in Data Warehousing ......................... 675<br>Fundamental Issues in Data Mining ............................. 677<br>Neural Networks .................................................... 684<br>Basic Concepts of Neural Networks ................................. 685<br>Estimating a Neural Network Model ................................. 688<br>Using a Neural Network for Classification ............................ 691<br>Summary ..................................................... 692<br>Resampling ........................................................ 692<br>A Brief Review of Parametric Inference .............................. 693<br>Basic Concepts in Resampling ..................................... 693<br>An Example of Resampling and Multiple Regression ................... 694<br>Summary ..................................................... 696<br>Summary o Questions o References .................................... 697<br>Appendix A: Applications of Multivariate Data Analysis ...... 700<br>Index ................................................................ i-i<br>

Available:*

Library
Material Type
Item Barcode
Shelf Number
Status
Searching...
Book 049645 519.535 MUL 1998 k.1
Searching...

On Order

Go to:Top of Page