Title:
Numerical mathematics
Author:
Quarteroni, Alfio
ISBN:
9780387989594
Personal Author:
Publication Information:
New York : Springer Verlag , 2000.
Physical Description:
645 s. ; 24 sm.
Series:
Texts in Applied Mathematics; 37
Series Title:
Texts in Applied Mathematics; 37
Abstract:
NUMERİCAL MATHEMATİCS<br>Quarteroni-Sacco-Saleri<br><br><br><br>Contents<br>Series Preface v<br>Preface vii<br>PART I: Getting Started<br>1. Foundations of Matrix Analysis 1<br>1.1 Vector Spaces ......................... 1<br>1.2 Matrices ............................ 3<br>1.3 Operations with Matrices ................... 5<br>1.3.1 Inverse of a Matrix .................. 6<br>1.3.2 Matrices and Linear Mappings ........... 7<br>1.3.3 Operations with Block-Partitioned Matrices .... 7<br>1.4 Trace and Determinant of a Matrix ............. 8<br>1.5 Rank and Kernel of a Matrix ................ 9<br>1.6 Special Matrices ........................ 10<br>1.6.1 Block Diagonal Matrices ............... 10<br>1.6.2 Trapezoidal and Triangular Matrices ........ 11<br>1.6.3 Banded Matrices ................... 11<br>1.7 Eigenvalues and Eigenvectors ................ 12<br>1.8 Similarity Transformations .................. 14<br>1.9 The Singular Value Decomposition (SVD) ......... 16<br>1.10 Scalar Product and Norms in Vector Spaces ........ 17<br>1.11 Matrix Norms ......................... 21<br> <br>1.11.1 Relation Between Norms and the<br>Spectral Radius of a Matrix ............. 25<br>1.11.2 Sequences and Series of Matrices .......... 26<br>1.12 Positive Definite, Diagonally Dominant and M-Matrices . 27<br>1.13 Exercises ............................ 30<br>2. Principles of Numerical Mathematics 33<br>2.1 Well-Posedness and Condition Number of a Problem ... 33<br>2.2 Stability of Numerical Methods ............... 37<br>2.2.1 Relations Between Stability and Convergence ... 40<br>2.3 A priori and a posteriori Analysis .............. 41<br>2.4 Sources of Error in Computational Models ......... 43<br>2.5 Machine Representation of Numbers ............ 45<br>2.5.1 The Positional System ................ 45<br>2.5.2 The Floating-Point Number System ........ 46<br>2.5.3 Distribution of Floating-Point Numbers ...... 49<br>2.5.4 IEC/IEEE Arithmetic ................ 49<br>2.5.5 Rounding of a Real Number in Its<br>Machine Representation ............... 50<br>2.5.6 Machine Floating-Point Operations ......... 52<br>2.6 Exercises ............................ 54<br>PART II: Numerical Linear Algebra<br>3. Direct Methods for the Solution of Linear Systems 57<br>3.1 Stability Analysis of Linear Systems ............ 58<br>3.1.1 The Condition Number of a Matrix ........ 58<br>3.1.2 Forward a priori Analysis .............. 60<br>3.1.3 Backward a priori Analysis ............. 63<br>3.1.4 A posteriori Analysis ................. 64<br>3.2 Solution of Triangular Systems ............... 65<br>3.2.1 Implementation of Substitution Methods ..... 65<br>3.2.2 Rounding Error Analysis ................ 67<br>3.2.3 Inverse of a Triangular Matrix ........... 67<br>3.3 The Gaussian Elimination Method (GEM) and<br>LU Factorization ....................... 68<br>3.3.1 GEM as a Factorization Method .......... 72<br>3.3.2 The Effect of Rounding Errors ........... 76<br>3.3.3 Implementation of LU Factorization ........ 77<br>3.3.4 Compact Forms of Factorization .......... 78<br>3.4 Other Types of Factorization ................. 79<br>3.4.1 LDMT Factorization ................. 79<br>3.4.2 Symmetric and Positive Definite Matrices:<br>The Cholesky Factorization ............. 80<br>3.4.3 Rectangular Matrices: The QR Factorization ... 82<br> <br>3.5 Pivoting ............................ 85<br>3.6 Computing the Inverse of a Matrix ............. 89<br>3.7 Banded Systems ........................ 90<br>3.7.1 Tridiagonal Matrices ................. 91<br>3.7.2 Implementation Issues ................ 92<br>3.8 Block Systems ......................... 93<br>3.8.1 Block LU Factorization ............... 94<br>3.8.2 Inverse of a Block-Partitioned Matrix ....... 95<br>3.8.3 Block Tridiagonal Systems .............. 95<br>3.9 Sparse Matrices ........................ 97<br>3.9.1 The Cuthill-McKee Algorithm ........... 98<br>3.9.2 Decomposition into Substructures ......... 100<br>3.9.3 Nested Dissection ................... 103<br>3.10 Accuracy of the Solution Achieved Using GEM ...... 103<br>3.11 An Approximate Computation of K(A) ........... 106<br>3.12 Improving the Accuracy of GEM .............. 109<br>3.12.1 Scaling ........................ 110<br>3.12.2 Iterative Refinement ................. Ill<br>3.13 Undetermined Systems .................... 112<br>3.14 Applications .......................... 115<br>3.14.1 Nodal Analysis of a Structured Frame ....... 115<br>3.14.2 Regularization of a Triangular Grid ........ 118<br>3.15 Exercises ............................ 121<br>4. Iterative Methods for Solving Linear Systems 123<br>4.1 On the Convergence of Iterative Methods .......... 123<br>4.2 Linear Iterative Methods ................... 126<br>4.2.1 Jacobi, Gauss-Seidel and Relaxation Methods . . . 127<br>4.2.2 Convergence Results for Jacobi and<br>Gauss-Seidel Methods ................ 129<br>4.2.3 Convergence Results for the Relaxation Method . 131<br>4.2.4 A priori Forward Analysis .............. 132<br>4.2.5 Block Matrices .................... 133<br>4.2.6 Symmetric Form of the Gauss-Seidel and<br>SOR Methods ..................... 133<br>4.2.7 Implementation Issues ................ 135<br>4.3 Stationary and Nonstationary Iterative Methods ...... 136<br>4.3.1 Convergence Analysis of the Richardson Method . 137<br>4.3.2 Preconditioning Matrices .............. 139<br>4.3.3 The Gradient Method ................ 146<br>4.3.4 The Conjugate Gradient Method .......... 150<br>4.3.5 The Preconditioned Conjugate Gradient Method . 156<br>4.3.6 The Alternating-Direction Method ......... 158<br>4.4 Methods Based on Krylov Subspace Iterations ....... 159<br>4.4.1 The Arnold! Method for Linear Systems ...... 162<br> <br>4.4.2 The GMRES Method ................ 165<br>4.4.3 The Lanczos Method for Symmetric Systems . . . 167<br>4.5 The Lanczos Method for Unsymmetric Systems ...... 168<br>4.6 Stopping Criteria ....................... 171<br>4.6.1 A Stopping Test Based on the Increment ..... 172<br>4.6.2 A Stopping Test Based on the Residual ...... 174<br>4.7 Applications .......................... 174<br>4.7.1 Analysis of an Electric Network . .......... 174<br>4.7.2 Finite Difference Analysis of Beam Bending .... 177<br>4.8 Exercises ............................ 179<br>Approximation of Eigenvalues and Eigenvectors 183<br>5.1 Geometrical Location of the Eigenvalues .......... 183<br>5.2 Stability and Conditioning Analysis ............. 186<br>5.2.1 A priori Estimates .................. 186<br>5.2.2 A posteriori Estimates ................ 190<br>5.3 The Power Method ...................... 192<br>5.3.1 Approximation of the Eigenvalue of<br>Largest Module .................... 192<br>5.3.2 Inverse Iteration ................... 195<br>5.3.3 Implementation Issues ................ 196<br>5.4 The QR Iteration ....................... 200<br>5.5 The Basic QR Iteration .................... 201<br>5.6 The QR Method for Matrices in Hessenberg Form ..... 203<br>5.6.1 Householder and Givens Transformation Matrices 204<br>5.6.2 Reducing a Matrix in Hessenberg Form ...... 207<br>5.6.3 QR Factorization of a Matrix in Hessenberg Form 209<br>5.6.4 The Basic QR Iteration Starting from<br>Upper Hessenberg Form ............... 210<br>5.6.5 Implementation of Transformation Matrices .... 212<br>5.7 The QR Iteration with Shifting Techniques .........
215<br>5.7.1 The QR Method with Single Shift ......... 215<br>5.7.2 The QR Method with Double Shift ......... 218<br>5.8 Computing the Eigenvectors and the SVD of a Matrix . . 221<br>5.8.1 The Hessenberg Inverse Iteration .......... 221<br>5.8.2 Computing the Eigenvectors from the<br>Schur Form of a Matrix ............... 221<br>5.8.3 Approximate Computation of the SVD of a Matrix 222<br>5.9 The Generalized Eigenvalue Problem ............ 224<br>5.9.1 Computing the Generalized Real Schur Form . . . 225<br>5.9.2 Generalized Real Schur Form of<br>Symmetric-Definite Pencils ............. 226<br>5.10 Methods for Eigenvalues of Symmetric Matrices ...... 227<br>5.10.1 The Jacobi Method ................. 227<br>5.10.2 The Method of Sturm Sequences .......... 230<br> <br>5.11 The Lanczos Method ..................... 233<br>5.12 Applications .......................... 235<br>5.12.1 Analysis of the Buckling of a Beam ......... 236<br>5.12.2 Free Dynamic Vibration of a Bridge ........ 238<br>5.13 Exercises ............................ 240<br>PART III: Around Functions and Punctionals<br>6. Rootfinding for Nonlinear Equations 245<br>6.1 Conditioning of a Nonlinear Equation ............ 246<br>6.2 A Geometric Approach to Rootfinding ........... 248<br>6.2.1 The Bisection Method ................ 248<br>6.2.2 The Methods of Chord, Secant and Regula Falsi<br>and Newton’s Method ................ 251<br>6.2.3 The Dekker-Brent Method ............. 256<br>6.3 Fixed-Point Iterations for Nonlinear Equations ....... 257<br>6.3.1 Convergence Results for<br>Some Fixed-Point Methods ............. 260<br>6.4 Zeros of Algebraic Equations ................. 261<br>6.4.1 The Horner Method and Deflation ......... 262<br>6.4.2 The Newton-Horner Method ............ 263<br>6.4.3 The Muller Method ................. 267<br>6.5 Stopping Criteria ....................... 269<br>6.6 Post-Processing Techniques for Iterative Methods ..... 272<br>6.6.1 Aitken’s Acceleration ................ 272<br>6.6.2 Techniques for Multiple Roots ........... 275<br>6.7 Applications .......................... 276<br>6.7.1 Analysis of the State Equation for a Real Gas . . 276<br>6.7.2 Analysis of a Nonlinear Electrical Circuit ..... 277<br>6.8 Exercises ............................ 279<br>7. Nonlinear Systems and Numerical Optimization 281<br>7.1 Solution of Systems of Nonlinear Equations ........ 282<br>7.1.1 Newton’s Method and Its Variants .......... 283<br>7.1.2 Modified Newton’s Methods ............. 284<br>7.1.3 Quasi-Newton Methods ............... 288<br>7.1.4 Secant-Like Methods ................. 288<br>7.1.5 Fixed-Point Methods ................. 290<br>7.2 Unconstrained Optimization ................. 294<br>7.2.1 Direct Search Methods ................ 295<br>7.2.2 Descent Methods ................... 300<br>7.2.3 Line Search Techniques ............... 302<br>7.2.4 Descent Methods for Quadratic Functions ..... 304<br>7.2.5 Newton-Like Methods for Function Minimization . 307<br>7.2.6 Quasi-Newton Methods ............... 308<br> <br>7.2.7 Secant-Like Methods ................. 309<br>7.3 Constrained Optimization .................. 311<br>7.3.1 Kuhn-Tucker Necessary Conditions for<br>Nonlinear Programming ............... 313<br>7.3.2 The Penalty Method ................. 315<br>7.3.3 The Method of Lagrange Multipliers ........ 317<br>7.4 Applications .......................... 319<br>7.4.1 Solution of a Nonlinear System Arising from<br>Semiconductor Device Simulation .......... 320<br>7.4.2 Nonlinear Regularization of a Discretization Grid . 323<br>7.5 Exercises ............................ 325<br>8. Polynomial Interpolation 327<br>8.1 Polynomial Interpolation ................... 328<br>8.1.1 The Interpolation Error ............... 329<br>8.1.2 Drawbacks of Polynomial Interpolation on Equally<br>Spaced Nodes and Runge’s Counterexample .... 330<br>8.1.3 Stability of Polynomial Interpolation ........ 332<br>8.2 Newton Form of the Interpolating Polynomial ....... 333<br>8.2.1 Some Properties of Newton Divided Differences . . 335<br>8.2.2 The Interpolation Error Using Divided Differences 337<br>8.3 Piecewise Lagrange Interpolation .............. 338<br>8.4 Hermite-Birkoff Interpolation ................ 341<br>8.5 Extension to the Two-Dimensional Case .......... 343<br>8.5.1 Polynomial Interpolation .............. 343<br>8.5.2 Piecewise Polynomial Interpolation ......... 344<br>8.6 Approximation by Splines .................. 348<br>8.6.1 Interpolatory Cubic Splines ............. 349<br>8.6.2 B-Splines ....................... 353<br>8.7 Splines in Parametric Form ................. 357<br>8.7.1 Bezier Curves and Parametric B-Splines ...... 359<br>8.8 Applications .......................... 362<br>8.8.1 Finite Element Analysis of a Clamped Beam . . . 363<br>8.8.2 Geometric Reconstruction Based on<br>Computer Tomographies ............... 366<br>8.9 Exercises ............................ 368<br>9. Numerical Integration 371<br>9.1 Quadrature Formulae ..................... 371<br>9.2 Interpolatory Quadratures .................. 373<br>9.2.1 The Midpoint or Rectangle Formula ........ 373<br>9.2.2 The Trapezoidal Formula .............. 375<br>9.2.3 The Cavalieri-Simpson Formula ........... 377<br>9.3 Newton-Cotes Formulae ................... 378<br>9.4 Composite Newton-Cotes Formulae ............. 383<br> <br>9.5 Hermite Quadrature Formulae ................ 386<br>9.6 Richardson Extrapolation .................. 387<br>9.6.1 Romberg Integration ................. 389<br>9.7 Automatic Integration .................... 391<br>9.7.1 Non Adaptive Integration Algorithms ....... 392<br>9.7.2 Adaptive Integration Algorithms .......... 394<br>9.8 Singular Integrals ....................... 398<br>9.8.1 Integrals of Functions with Finite<br>Jump Discontinuities ................. 398<br>9.8.2 Integrals of Infinite Functions ............ 398<br>9.8.3 Integrals over Unbounded Intervals ......... 401<br>9.9 Multidimensional Numerical Integration .......... 402<br>9.9.1 The Method of Reduction Formula ......... 403<br>9.9.2 Two-Dimensional Composite Quadratures ..... 404<br>9.9.3 Monte Carlo Methods for<br>Numerical Integration ................ 407<br>9.10 Applications .......................... 408<br>9.10.1 Computation of an Ellipsoid Surface ........ 408<br>9.10.2 Computation of the Wind Action on a<br>Sailboat Mast ..................... 410<br>9.11 Exercises ............................ 412<br>PART IV: Transforms, Differentiation and Problem Discretization<br>10. Orthogonal Polynomials in Approximation Theory 415<br>10.1 Approximation of Functions by Generalized Fourier Series 415<br>10.1.1 The Chebyshev Polynomials ............. 417<br>10.1.2 The Legendre Polynomials ............. 419<br>10.2 Gaussian Integration and Interpolation ........... 419<br>10.3 Chebyshev Integration and Interpolation .......... 424<br>10.4 Legendre Integration and Interpolation ........... 426<br>10.5 Gaussian Integration over Unbounded Intervals ...... 428<br>10.6 Programs for the Implementation of Gaussian Quadratures 429<br>10.7 Approximation of a Function in the Least-Squares Sense . 431<br>10.7.1 Discrete Least-Squares Approximation ....... 431<br>10.8 The Polynomial of Best Approximation ........... 433<br>10.9 Fourier Trigonometric Polynomials ............. 435<br>10.9.1 The Gibbs Phenomenon ............... 439<br>10.9.2 The Fast Fourier Transform .............
440<br>10.10 Approximation of Function Derivatives ........... 442<br>10.10.1 Classical Finite Difference Methods ......... 442<br>10.10.2 Compact Finite Differences ............. 444<br>10.10.3 Pseudo-Spectral Derivative ............. 448<br>10.11 Transforms and Their Applications ............. 450<br> <br>10.11.1 The Fourier Transform ................ 450<br>10.11.2 (Physical) Linear Systems and Fourier Transform . 453<br>10.11.3 The Laplace Transform ............... 455<br>10.11.4 The Z-Transform ................... 457<br>10.12 The Wavelet Transform .................... 458<br>10.12.1 The Continuous Wavelet Transform ........ 458<br>10.12.2 Discrete and Orthonormal Wavelets ........ 461<br>10.13 Applications .......................... 463<br>10.13.1 Numerical Computation of Blackbody Radiation . 463<br>10.13.2 Numerical Solution of Schrödinger Equation . . . . 464<br>10.14 Exercises ............................ 467<br>11. Numerical Solution of Ordinary Differential Equations 469<br>11.1 The Cauchy Problem ..................... 469<br>11.2 One-Step Numerical Methods ................ 472<br>11.3 Analysis of One-Step Methods ................ 473<br>11.3.1 The Zero-Stability .................. 475<br>11.3.2 Convergence Analysis ................ 477<br>11.3.3 The Absolute Stability ................ 479<br>11.4 Difference Equations ..................... 482<br>11.5 Multistep Methods ...................... 487<br>11.5.1 Adams Methods ................... 490<br>11.5.2 BDF Methods .................... 492<br>11.6 Analysis of Multistep Methods . ............... 492<br>11.6.1 Consistency ...................... 493<br>11.6.2 The Root Conditions ................. 494<br>11.6.3 Stability and Convergence Analysis for<br>Multistep Methods .................. 495<br>11.6.4 Absolute Stability of Multistep Methods . ..... 499<br>11.7 Predictor-Corrector Methods ................. 502<br>11.8 Runge-Kutta Methods .................... 508<br>11.8.1 Derivation of an Explicit RK Method ....... 511<br>11.8.2 Stepsize Adaptivity for RK Methods ........ 512<br>11.8.3 Implicit RK Methods ................ 514<br>11.8.4 Regions of Absolute Stability for RK Methods .. 516<br>11.9 Systems of ODEs ....................... 517<br>11.10 Stiff Problems ......................... 519<br>11.11 Applications .......................... 521<br>11.11.1 Analysis of the Motion of a Frictionless Pendulum 522<br>11.11.2 Compliance of Arterial Walls ............ 523<br>11.12 Exercises ............................ 527<br>12. Two-Point Boundary Value Problems 531<br>12.1 A Model Problem ....................... 531<br>12.2 Finite Difference Approximation ............... 533<br> <br>12.2.1 Stability Analysis by the Energy Method ..... 534<br>12.2.2 Convergence Analysis ................ 538<br>12.2.3 Finite Differences for Two-Point Boundary<br>Value Problems with Variable Coefficients ..... 540<br>12.3 The Spectral Collocation Method .............. 542<br>12.4 The Galerkin Method ..................... 544<br>12.4.1 Integral Formulation of Boundary-Value Problems 544<br>12.4.2 A Quick Introduction to Distributions ....... 546<br>12.4.3 Formulation and Properties of the<br>’ - Galerkin Method ................... 547<br>12.4.4 Analysis of the Galerkin Method .......... 548<br>12.4.5 The Finite Element Method ............. 550<br>12.4.6 Implementation Issues ................ 556<br>12.4.7 Spectral Methods ................... 559<br>12.5 Advection-Diffusion Equations ................ 560<br>12.5.1 Galerkin Finite Element Approximation ...... 561<br>12.5.2 The Relationship Between Finite Elements and<br>Finite Differences; the Numerical Viscosity .... 563<br>12.5.3 Stabilized Finite Element Methods ......... 567<br>12.6 A Quick Glance to the Two-Dimensional Case ....... 572<br>12.7 Applications .......................... 575<br>12.7.1 Lubrication of a Slider ................ 575<br>12.7.2 Vertical Distribution of Spore<br>Concentration over Wide Regions .......... 576<br>12.8 Exercises ............................ 578<br>13. Parabolic and Hyperbolic Initial Boundary<br>Value Problems 581<br>13.1 The Heat Equation ...................... 581<br>13.2 Finite Difference Approximation of the Heat Equation . . 584<br>13.3 Finite Element Approximation of the Heat Equation . . . 586<br>13.3.1 Stability Analysis of the 0-Method ......... 588<br>13.4 Space-Time Finite Element Methods for the . -<br>Heat Equation ......................... 593<br>13.5 Hyperbolic Equations: A Scalar Transport Problem .... 597<br>13.6 Systems of Linear Hyperbolic Equations .......... 599<br>13.6.1 The Wave Equation ................. 601<br>13.7 The Finite Difference Method for Hyperbolic Equations . . 602<br>13.7.1 Discretization of the Scalar Equation ........ 602<br>13.8 Analysis of Finite Difference Methods ............ 605<br>13.8.1 Consistency ...................... 605<br>13.8.2 Stability ........................ 605<br>13.8.3 The CFL Condition ................. 606<br>13.8.4 Von Neumann Stability Analysis .......... 608<br>13.9 Dissipation and Dispersion .................. 611<br> <br>13.9.1 Equivalent Equations ................ 614<br>13.10 Finite Element Approximation of Hyperbolic Equations . . 618<br>13.10.1 Space Discretization with Continuous and<br>Discontinuous Finite Elements ........... 618<br>13.10.2 Time Discretization ................. 620<br>13.11 Applications .......................... 623<br>13.11.1 Heat Conduction in a Bar .............. 623<br>13.11.2 A Hyperbolic Model for Blood Flow<br>Interaction with Arterial Walls ........... 623<br>13.12 Exercises ............................ 625<br>References 627<br>Index of MATLAB Programs 643<br>Index 647<br>
Subject Term:
Available:*
Library | Material Type | Item Barcode | Shelf Number | Status |
---|---|---|---|---|
Searching... | Book | 049577 | 519.4 QUAn 2000 k.1 | Searching... |