Title:
Geotechnical earthquake engineering
Author:
Kramer, Steven L.
ISBN:
9780133749434
Personal Author:
Publication Information:
New Jersey : Prentice Hall , 1996.
Physical Description:
653 s. ; 24 sm.
Contents:
<br>GEOTECNICAL EARTHQUAKE<br>ENGINEERING<br>STEVEN L. KRAMER<br>Contents<br>Preface xv<br>1 Introduction to Geotechnical Earthquake Engineering 1<br>1.1 Introduction 1<br>1.2 Background 1<br>1.3 Seismic Hazards 2<br>1.3.1 Ground Shaking, 2<br>1.3.2 Structural Hazards, 3<br>1.3.3 Liquefaction, 5<br>1.3.4 Landslides, 9<br>1.3.5 Retaining Structure Failures, II<br>1.3.6 Lifeline Hazards, 11<br>1.3.7 Tsunami and Seiche Hazards, 13<br>1.4 Mitigation of Seismic Hazards 14<br>1.5 Significant Historical Earthquakes 14<br><br> <br>Contents<br>Seismology and Earthquakes 18<br>2.1 Introduction 18<br>2.2 Internal Structure of the Earth 18<br>2.2.7 Seismic Waves, 19<br>2.2.2 Internal Structure, 20 <br>2.3 Continental Drift and Plate Tectonics 23<br>2.3.1 Plate Tectonics, 24<br>2.3.2 Plate Boundaries, 29<br>2.4 Faults 33<br>2.4.1 Fault Geometry, 33 <br>2.4.2 Fault Movement, 34<br>2.5 Elastic Rebound Theory 36<br>2.5.1 Relationship to Earthquake Recurrence, 39<br>2.5.2 Relationship to Tectonic Environment, 41<br>2.5.3 Seismic Moment, 42<br>2.6 Other Sources of Seismic Activity 42<br>2.7 Geometric Notation 43<br>2.8 Location of Earthquakes 44<br>2.9 Size of Earthquakes 45<br>2.9.7 Earthquake Intensity, 45 <br>2.9.8 2.9.2 Earthquake Magnitude, 46<br>2.9.3 Earthquake Energy, 50 2.10 Summary 51<br>Strong Ground Motion 54<br>3.1 Introduction 54<br>3.2 Strong-Motion Measurement 56 <br>3.2.1 Seismographs, 56<br>3.2.2 Data Acquisition and Digitization, 59 <br>3.2.3 Strong-Motion Processing, 61<br>3.2.4 Strong-Motion Instrument Arrays, 62 <br>3.2.5 Strong-Motion Records, 64<br>3.3 Ground Motion Parameters 65<br>3.3.1 Amplitude Parameters, 66<br>3.3.2 Frequency Content Parameters, 70<br>3.3.3 Duration, 79<br>3.3.4 Other Measures of Ground Motion, 82<br>3.3.5 Discussion, 84<br> <br>3.4 Estimation of Ground Motion Parameters 84 <br>3.4.! Magnitude and Distance Effects, 85<br>3.4.2 Development of Predictive Relationships, 86<br>3.4.3 Estimation of <br>3.5 Spatial Variability of Ground Motions 100<br>3.6 Summary 102<br>Seismic Hazard Analysis 1O6 Amplitude Parameters, 88<br>3.4.4 Estimation of Frequency Content Parameters, 91<br>3.4.5 Estimation of Duration, 95<br>3.4.6 Estimation of Other Parameters, 95<br>4.1 Introduction 106<br>4.2 Identification and Evaluation of Earthquake Sources 107<br>4.2.1 Geologic Evidence, 107<br>4.2.2 Tectonic Evidence, 113 <br>4.2.3 teorical Seismicity, 113 <br>4.2.3 4.2.4 Instrumental Seismicity, 114 <br>4.3 Deterministic Seismic Hazard Analysis 114 <br>4.4 Probabilistic Seismic Hazard Analysis 117<br>4.4.1 Earthquake Source Characterization, 118<br>4.4.2 Predictive Relationships, 126<br>4.4.3 Temporal Uncertainty, 127<br>4.4.4 Probability Computations, 129<br>4.5 Summary 138<br>Wave Propagation 143<br>5.1 Introduction 143 <br>5.2 Waves in Unbounded Media 144<br>5.2.7 One-Dimensional Wave Propagation, 144 5.2.2 Three-Dimensional Wave Propagation, 149<br>5.3 Waves in a Semi-infinite Body 156<br>5.3.1 Rayleigh Waves, 156 <br>5.5.2 Love Waves, 162 <br>5.3.3 Higher-Mode Surface Waves, 164<br>5.3.4 Dispersion of Surface Waves, 164<br>5.3.5 Phase and Group Velocities, 165<br>5.4 Waves in a Layered Body 165<br>5.4.1 One-Dimensional Case: Material Boundary in an Infinite Rod, 165<br>5.4.2 Three-Dimensional Case: Inclined Waves, 170<br>5.5 Attenuation of Stress Waves 174<br>5.5.7 Material Damping, 175<br>5.5.2 Radiation Damping, J79<br>5.6 Summary 180<br> <br>nam/c Soil Properties 184<br>Introduction 184<br>Representation of Stress Conditions by the Mohr Circle 185<br>6.2. / Principal Stresses, 187<br>6.2.2 Stress Paths, 188<br>Measurement of Dynamic Soil Properties 191<br>6.3.1 Field Tests, 191 <br>6.3.2 Laboratory Tests, 215<br>6.3.3 Interpretation of Observed Ground Response, 228 Stress-Strain Behavior of Cyclically Loaded Soils 228<br>6.4.1 Some Basic Aspects of Paniculate Matter Behavior, 228<br>6.4.2 Equivalent Linear Model, 230<br>6.4.3 Cyclic Nonlinear Models, 240<br>6.4.4 Discussion, 244<br>6.4.5 Strength of Cyclically Loaded Soil 244<br>6.5.1 Definitions of Failure, 244<br>6.5.2 Cyclic Strength, 245<br>6.5.3 Monotonie Strength, 246<br> Summary 248<br>round Response Analysis 254<br>1 Introduction 254<br>2 One-Dimensional Ground Response Analysis 255<br>7.2.1 Linear Approach, 256<br>7.2.2 Nonlinear Approach, 275<br>7.2.3 Comparison of One-Dimensional Ground Response Analyses, 279<br>3 Two-Dimensional Ground Response Analysis 280<br>7.3.1 Dynamic Finite-Element Analysis, 281<br>7.3.2 Equivalent Linear Approach, 284<br>7.3.3 Nonlinear Approach, 286<br>7.3.4 Other Approaches to Two-Dimensional Ground Response Problems, 286<br>7.3.5 Comparison of Two-Dimensional Ground Response Analyses, 291 Three-Dimensional Ground Response Analysis 291<br>7.4.1 Equivalent Linear Finite-Element Approach, 292<br>7.4.2 Nonlinear Finite-Element Approach, 292<br>7.4.3 Shear Beam Approach, 293<br>7.4.4 Comparison of Three-Dimensional Ground Response Analyses, 294<br>5 Soil-Structure Interaction 294<br>7.5.1 Illustration of Soil-Structure Interaction Effects, 295<br>7.5.2 Methods of Analysis, 300<br>6 Summary 303<br> <br>ntents xi<br>Local Site Effects and Design Ground Motions 3O8<br>8.1 Introduction 308 <br>8.2 Effects of Local Site Conditions on Ground Motion 309<br>8.2.1 Evidence from Theoretical Ground Response Analyses, 309<br>8.2.2 Evidence from Measured Amplification Functions, 310<br>8.2.3 Evidence from Measured Surface Motions, 312<br>8.2.4 Compilations of Data on Local Site Effects, 317<br>8.2.5 Effects of Surface Topography and Basin Geometry, 319<br>8.3 Design Parameters 323 <br>8.3.1 Design Earthquakes, 324<br>8.3.2 Design Spectra, 325<br>8.4 Development of Design Parameters 327<br>8.4.1 Site-Specific Development, 327<br>8.4.2 Code-Based Development, 328 <br>8.5 Development of Ground Motion Time Histories 340<br>8.5.1 Modification of Actual Ground Motion Records, 340<br>8.5.2 Time-Domain Generation, 341<br>8.5.3 Frequency-Domain Generation, 343<br>8.5.4 Green’s Function Techniques, 343<br>8.5.5 Limitations of Artificial Ground Motions, 345<br>8.6 Summary 345<br>Liquefaction 348<br>9.1 Introduction 348 <br>9.2 Liquefaction-Related Phenomena 349<br>9.2.1 Flow Liquefaction, 349<br>9.2.2 Cyclic Mobility, 349<br>9.3 Evaluation of Liquefaction Hazards 350<br>9.4 Liquefaction Susceptibility 351 <br>9.4.1 Historical Criteria, 352<br>9.4.2 Geologic Criteria, 353<br>9.4.3 Compositional Criteria, 354<br>9.4.4 State Criteria, 355<br>9.5 Initiation of Liquefaction 361<br>9.5.
Abstract:
/ Flow Liquefaction Surface, 361<br>9.5.2 Influence of Excess Pore Pressure, 366<br>9.5.3 Evaluation of Initiation of Liquefaction, 368<br>9.6 Effects of Liquefaction 397<br>9.6.7 Alteration of Ground Motion, 398<br>9.6.2 Development of Sand Boils, 400<br>9.6.3 Settlement, 402<br>9.6.4 instability, 408<br>9.7 Summary 417<br> <br> Slope Stability 423<br>Introduction 423<br>Types of Earthquake-Induced Landslides 424 Earthquake-Induced Landslide Activity 426 Evaluation of Slope Stability 429 Static Slope Stability Analysis 430 10.5.1 Limit Equilibrium Analysis, 430 /0.5.2 Stress-Deformation Analyses, 433 0.6 Seismic Slope Stability Analysis 433<br>10.6.1 Analysis of Inerlial Instability, 433<br>10.6.2 Analysis of Weakening Instability, 450<br>0.7 Summary 462<br>Seismic Design of Retaining Walls , 466<br>Introduction 466 Types of Retaining Walls 466 Types of Retaining Wall Failures 467 Static Pressures on Retaining Walls 469<br>11.4.1 Rankine Theory, 469<br>11.4.2 Coulomb Theory, 472<br>11.4.3 Logarithmic Spiral Method, 474<br>11.4.4 Stress-Deformation Analysis, 475<br>Dynamic Response of Retaining Walls 477<br>Seismic Pressures on Retaining Walls 477<br>11.6.1 Yielding Walls, 478<br>11.6.2 Nonyielding Walls, 484<br>11.6.3 Effects of Water on Wall Pressures, 486<br>11.6.4 Finite-Element Analysis, 489<br>Seismic Displacements of Retaining Walls 489<br>} 1.7.1 Richards-Elms Method, 489<br>11.7.2 Whitman-LiaoMethod, 492<br>11.7.3 Finite-Element Analysis, 493<br>Seismic Design Considerations 494 <br>11.8.1 Gravity Walls, 494<br>11.8.2 Cantilever Walls, 495<br>11.8.3 Braced Walls, 495 <br>11.8.4 Reinforced Soil Walls, 500<br>Summary 503 <br> <br>12 Soil Improvement for Remediation of Seismic Hazards 5O6<br>12.1 Introduction 506<br>12.2 Densification Techniques 507<br>12.2.1 Vibro Techniques, 508<br>12.2.2 Dynamic Compaction, 510<br>12.2.3 Blasting, 512<br>12.2.4 Compaction Grouting, 513<br>12.2.5 Areal Extent of Densification, 514<br>12.3 Reinforcement Techniques 515<br>12.3.1 Stone Columns, 515<br>12.3.2 Compaction Piles, 516<br>12.3.3 Drilled Inclusions, 516<br>12.4 Grouting and Mixing Techniques 517<br>12.4.1 Grouting, 518<br>12.4.2 Mixing, 519<br>12.5 Drainage Techniques 521<br>12.6 Verification of Soil Improvement 522<br>12.6.1 Laboratory Testing Techniques, 522<br>12.6.2 In Situ Testing Techniques, 523<br>12.6.3 Geophysical Testing Techniques, 523<br>12.7 Other Considerations 524<br>12.8 Summary 524<br>A Vibratory Motion ,, 527<br>A.I Introduction 527<br>A.2 Types of Vibratory Motion 527<br>A.2.1 Simple Harmonic Motion, 528<br>A.2.2 Trigonometric Notation for Simple Harmonic Motion, 529<br>A.2.3 Other Measures of Motion, 533 A.3 Fourier Series 536<br>A.3.1 Trigonometric Form, 536<br>A.3.2 Exponential Form, 539<br>A.3.3 Discrete Fourier Transform, 541<br>A.3.4 Fast Fourier Transform, 541<br>A.3.5 Power Spectrum, 542<br>B Dynamics of Discrete Systems 543<br>B.I Introduction 543<br>B.2 Vibrating Systems 544<br>B.3 Single-Degree-of-Freedom Systems 544<br> <br>B.4 Equation of Motion for SDOF System 545<br>B.4. i Equation of Motion: External Loading, 545<br>B.4.2 Equation of Motion: Vibration of Supports (Base Shaking), 547<br>B.5 Response of Linear SDOF Systems 547<br>B.5.Î Undamped Free Vibrations, 548<br>B.5.2 Damped Free Vibrations, 551<br>B.5.3 Response of SDOF Systems to Harmonic Loading, 553<br>B.5.4 Response of SDOF Systems to Periodic Loading, 561<br>B.5.5 Response of SDOF Systems to General Loading, 564 B.6 Damping 567<br>B.6.1 Viscous Damping, 567<br>B.6.2 Other Measures of Energy Dissipation, 569<br>B.6.3 Complex Stiffness, 570 B.7 Response Spectra 571 B.8 Response of Nonlinear SDOF Systems to General Loading 572<br>B.8.} Incremental Equation of Motion, 572<br>B.8.2 Numerical Integration, 574 B.9 Multiple-Degree-of-Freedom Systems 575<br>B. 9.1 Equations of Motion, 575<br>B.9.2 Undamped Free Vibrations, 577<br>B.9.3 Mode Superposition Method, 579<br>B.9.4 Response Spectrum Analysis, 581<br>B.9.5 Discussion, 582<br>Probability ConTENS 583<br>C.I Introduction 583<br>C.2 Sample Spaces and Events 583<br>C.3 Axioms of Probability 584<br>C.4 Probabilities of Events 585<br>C.5 Random Variables 588<br>C.6 Expected Values and Standard Deviations 589<br>C.7 Common Probability Distributions 590<br>C. 7.1 Uniform Distribution, 590<br>C.7.2 Normal Distribution, 591<br>C.7.3 Lognormal Distribution, 594<br>References 596<br>Index 643<br>
Available:*
Library | Material Type | Item Barcode | Shelf Number | Status |
---|---|---|---|---|
Searching... | Book | 049626 | 624.1762 KRAg 1996 k.1 | Searching... |