Cover image for Manufacturing processes and aquipment
Title:
Manufacturing processes and aquipment
Author:
Tlusty, Jiri
ISBN:
9780201498653
Personal Author:
Publication Information:
New Jersey : Prentice Hall , 2000.
Physical Description:
928 s. ; 28 sm.
Abstract:
MANUFACTURING PROCESSES AND EQUIPMENT-George Tlusty<br><br>Contents<br>Preface xix Acknowledgments xxii<br>PART 1 Background Matters<br>Chapter 1 Manufacturing Management<br>1.1 Mechanical Production 3<br>1.2 Industrial and Production Engineering 12<br>1.3 Industrial Engineering: Production Planning and Control 14<br>1.4 Group Technology 20<br>1.5 Process Planning: Computer-Aided Process Planning 24<br>1.6 Manufacturing Resources Planning 33<br>1.7 Production Scheduling, Monitoring, and Control 37<br>1.8 Just in Time 38<br>1.9 Conclusion 47 References 42 Questions 43<br>Chapter 2 Engineering Materials and Their Properties<br>2.1 Introduction 45<br>2.2 Mechanical Properties 46<br>2.2.1 The Tensile Test 46<br>2.2.2 Hardness Testing 50<br>Table 2.1 Comparison of Hardness Numbers 57<br>2.2.3 Notched Bar Impact Tests 57<br>2.2.4 High Temperature Tests 52<br>2.2.5 Fatigue Testing 52<br>2.3 Structures and Transformations in Metals and Alloys 53<br>2.3.1 Crystal Structures 53<br>Table 2.2 Interatomic Distances of Selected Crystals 54<br>2.3.2 Crystal Imperfections: Dislocations 54<br>2.3.3 Grain Boundaries and Deformation 56<br>2.4 Alloys: Phase Diagrams 56 2 A.I General 56 2.4.2 The Fe-C Phase Diagram 60<br> <br>2.5 Heat Treatment of Metals 63<br>2.5.1 " Metals: Steels 63<br>2.5.2 Phase Diagram for Al Alloys: Precipitation Hardening 67<br>2.5.3 Solid Solution Treatment 69<br>2.5 A Summarizing Methods of Strengthening Metals 70<br>2.6 Engineering Metals 77<br>2.6.1 Steels 71<br>Table 2.3 Specifications of Selected SAE-AISI Low-Alloy Steels 73 Table 2.4 Properties of the 4340 Steel 74<br>Table 2.5 Stainless Steels 75 \<br>Table 2.6 Tool Steels 76 Vx<br>2.6.2 Cast Irons 76<br>2.6.3 Aluminum Alloys and Magnesium Alloys 78 Table 2.7 Aluminum Casting Alloys 78 Table 2.8 Wrought Aluminum Alloys 80<br>2.6.4 Copper, Nickel, Zinc, and Their Alloys 80<br>Table 2.9 Selected Copper and Nickel Alloys 81 Table 2.10 Zinc Die-Casting Alloys 81<br>2.6.5 Titanium Alloys 82<br>Table 2.11 Titanium Alloys 82<br>2.6.6 Superalloys 83<br>Table 2.12 Superalloys 84 Table 2.13 Refractory Metals 85<br>2.6.7 Refractory Metals 84<br>2.7 Plastics 85<br>2.7.1 Polymerization Methods, Bonding, and Structures 86<br>2.7.2 Additives 88<br>2.7.3 Thermoplastics 89 2.1 A Thermosets 90<br>2.7.5 Elastomers 92<br>2.7.6 Special Applications of Polymers 92<br>Table 2.14 Room-Temperature, Short-Time Parameters of Selected Plastics 96<br>2.8 Ceramics 96<br>Table 2.15 Hardness of Some Ceramics 97<br>2.9 Composite Materials 99<br>Table 2.16 Mechanical Properties of GRP and CRP in Comparison with Metals 101<br>References 102 Questions 103<br>j<br>Chapter 3 Primary Metal working 105<br>3.1 Introduction: Iron and Steel Industries 705<br>3.2 Blast Furnace Operations 777<br>3.2.1 Design of the Furnace: Inputs and Outputs 777<br>3.2.2 Chemistry of the Blast Furnace Reactions Table 3.1 Pig Iron Compositions 776<br>Table 3.2 Utilities Requirements of a Self-Contained Blast Furnace Plant with Two Furnaces Producing 8400 Tons of Iron Per Day 77S<br> <br>3.3 Steel-Making Furnace Operations 779<br>3.3.1 The Open-Hearth (OH) Process 779<br>3.3.2 Basic Oxygen Furnace (BOF) 722<br>3.3.3 Electric Furnaces 724<br>3.3.4 Summary of Steel Production 726<br>3.4 Ingots: Continuous Casting of Slabs 727<br>3.5 Hot Forming: Open-Die Forging and Rolling 130<br>3.5.1 Primary Hot Rolling 737<br>3.5.2 Rolling Mill Configurations 734<br>Example 3.1 Specific Power in Rough Hot Rolling 138<br>3.5.3 Hot Forming of Tubes and Pipes 739<br>3.6 Cold Rolling of Sheet Metal 742<br>3.7 Casting 742<br>3.7.1 Expendable Mold Processes 746<br>3.7.2 Permanent-Mold Casting 752<br>3.7.3 Casting Materials 756<br>3.8 Aluminum: Manufacture, Use, and Processing 757<br>3.8.1 Manufacture and Use 757<br>3.8.2 Processing 760<br>3.9 Other Metals 764 3.10 Powder Metallurgy 765<br>3.10.1 The Powder 766<br>3.10.2 Compacting 767<br>3.10.3 Sintering 768 References 777 Questions 772<br>PART 2 Traditional Processes<br>Chapter 4 Metal Forming Technology<br>4.1 General Operating Conditions, Machines, and Tools 777<br>4.1.1 Hot Forming 778<br>4.1.2 Cold Work and Anneal Cycle 787<br>Example 4.1 Combining Cold Work and Annealing for Desired Material Properties 184<br>4.2 Basic Machines for Metal Forming 785<br>Table 4.1 Ratings of Forging Hammers 790<br>Table 4.2 Parameters of Presses 193<br>Example 4.2 Kinematics of a Crank Mechanism 794<br>Example 4.3 The Crank and Toggle Mechanism 796<br>Example 4.4 Work Done in a Forging Hammer 797<br>Example 4.5 Energy of a Hammer Strike Lost in the Motion of the<br>Anvil 198 Example 4.6 Slowdown of the Flywheel in a Punching Operation 79Î<br>4.3 Forging 207<br>4.3.1 Open-Die Forging (ODF) 207<br> <br>4.3.2 Roll Forging 204<br>4.3.3 Closed-Die Forging (CDF) 205<br>4.3.4 Hot and Cold Upsetting 209<br>Table 4.3 Principal Parameters of Hot Upsetting Machines 277 ">- 4.3.5 Extrusion 275<br>4.3.6 Forgeability of Metals 277<br>4.4 Sheet Metal Forming 218<br>4.4.1 Basic Operations and Presses 218<br>4.4.2 Automation of Presswork 225<br>4.4.3 Press Brake Work 229<br>4.4.4 Cold Roll Forming 230<br>4.4.5 Formability of Sheet Metals 232<br>4.5 Numerical Control (NC) in Metal Forming 236<br>4.5.1 Numerically Controlled (NC) Bending on a Press Brake 236<br>4.5.2 NC Turret Punch Presses 237 References 240 Questions 241<br>Chapter 5 Metal Forming Mechanics 242<br>5.1 Elementary Concepts 242<br>5.1.1 The Stress-Strain Diagram 243<br>5.1.2 Stress in Three Dimensions 246<br>:i 5.1.3 Yielding: Plastic Deformation 249<br>5.1.4 Special Cases of Yielding 257<br>5.2 Bulk Forming: Basic Approach-Forces, Pressures 253<br>5.2.1 Wire Drawing: Work, Force, and Maximum Reduction Without Friction 253<br>5.2.2 Wire Drawing: Pressure on the Die, and Axisymmetric Yielding 254<br>5.2.3 Wire Drawing with Friction 255<br>Example 5.1 Wire Drawing with Friction: Solution by Discrete Integration 255<br>5.2.4 Extruding a Round Bar 258<br>5.2.5 Rolling with Back and Forward Tension: Plane-Strain Yielding 258<br>5.3 Bulk Forming: Effects of Redundant Work and of Friction 260<br>5.3.1 Nonhomogeneous Deformation: Redundant Work 260<br>5.3.2 The Effect of Friction in Plane Strain 266<br>Example 5.2 Determine pmax and pav for Plane-Strain Compression Under the Combined Conditions of Dry Friction and of Friction Shear Flow 270<br>5.3.3 Effect of Friction in Upsetting a Cylindrical Workpiece 273 Example 5.3 Using a Gravity Hammer for Cold Upsetting of a Cylindrical Workpiece 276<br>5.3.4 Summary of the Effects of Friction and Redundant Work 280<br>5.3.5 Force and Neutral Point in Cold Rolling 282<br>Example 5.4 Compute the Pressures and Forces in Rolling 286<br>5.3.6 Material Failure in Bulk Forming 288<br> <br>:ontents<br>5.4 Analysis of Plate-and Sheet-Metal Forming 290<br>5.4.1 Simplified Analysis 290<br>5.4.2 Elastic and Plastic Bending 293<br>Example 5.5 Determine

the Shape of the Deformation of a Plate Loaded in<br>the Middle Between Supports 297 Table 5.1 The Coordinates of the Deflection Curve 298<br>5.4.3 Residual Stresses 299<br>5.4.4 Failures and Limitations in Bending 302<br>Table 5.2 Smallest Radii in Bending (pmin//0 303<br>5.4.6 Drawing of a Non-Strain-Hardening Material 306<br>5.4.7 Radial Drawing of a Strain-Hardening Material 308<br>Example 5.6 Compute the Variation of the Radial Drawing Stress for a Strain-Hardening Material 311<br>5.5 Chatter in Cold Rolling 372<br>5.5.1 A Simple Rolling Chatter Theory 372 References 377 Questions 377 Problems 378<br>Chapter 6 Processing of Polymers 324<br>6.1 Introduction: Properties Used in Processing 324<br>6.2 Summary of Selected Polymers 325<br>Table 6.1 U.S.

471 Example 8.7 How Does the Number of Tools Cutting Simultaneously<br>Affect Optimum Speed and Optimum Tool Life? 473<br>8.4.6 General Conclusions for the Choice of Cutting Speeds and Feeds 475 Table 8.6 Parameters Used in Cutting Data Banks 476<br>8.5 Tool Breakage: Wear and Breakage in Milling 477<br>8.5.1 Breakage in Continuous Cutting 477<br>8.5.2 Tool Wear and Breakage in Interrupted Cutting 481<br>8.5.3 Flank Wear in Milling 483 References 486 Questions 486 Problems 488<br>PART 3 Machine Tools 493<br>Chapter 9 Design of Machine Tools: Drives and Structures 495<br>9.1 General Description of Machine-Tool Design 495<br>9.2 Specifying the Characteristics of Main Drives 507 Example 9.1 Drive Characteristics 504<br>9.3 Accuracy of Machine Tools 506<br>9.3.1 Geometric Accuracy: Machine Tool Metrology 507 Example 9.2 Determining Errors at Offsets 573<br>9.3.2 Weight Deformations 576<br>9.3.3 Deformations Under Cutting Forces 579<br>Example 9.3 Copying of Form Error of Workpiece 523<br>9.4 Review of Fundamentals of Mechanical Vibrations 525<br>9.4.1 Vibrations: Natural, Forced, Self-Excited 525<br>9.4.2 Harmonic Variables 527<br>9.4.3 Basics of Vibrations: Transfer Function of a System with a Single Degree of Freedom 529<br> <br>9.4.4 Transfer Functions of a Selected System with Two Degrees of Freedom: Uncoupled Modes in Two Directions 532 Example 9.4 Forced Vibration of a System with Two Uncoupled Modes in<br>a Plane 533 Example 9.5 Determine the Transfer Function (Y/F) for a System with Two<br>Uncoupled Modes in a Plane 534<br>9.5 Forces and Forced Vibrations in Milling 537<br>9.5.1 Accuracy of End Milling: Straight Teeth, Static Deflection 537<br>9.5.2 The Dynamics: Forced Vibrations, Straight Teeth 538 Example 9.6 Variation of Fx and Fy Forces on Cutters with Straight Teeth 539<br>9.5.3 Forced Vibrations and Their Imprint as Error of Location of the Machined Surface 542<br>Example 9.7 Slotting with a Two-Fluted Cutter: Resonant Vibration 542 Example 9.8 Slotting with a Two-Fluted Cutter, Nonresonant<br>Conditions 544 Example 9.9 Up-Milling with a Four-Fluted Cutter with Straight Teeth:<br>Only One Tooth in Cut; Forces and Deflections 545<br>9.5.4 Forces on End Mills with Helical Teeth 548<br>Example 9.10 Forces in Milling with Helical Teeth 557<br>Example 9.11 Prove that the Cutting Force on a Four-Fluted Cutter in<br>Slotting Is Constant 55.3 Example 9.12 Show that at Certain Axial Depths of Cut the Milling Force<br>Is Constant 555<br>9.5.5 Errors of Surface Produced by End Mills with Helical Teeth: Static Deflections 556<br>9.6 Chatter in Metal Cutting 559<br>9.6.1 General Features 559<br>9.6.2 Mechanisms of Self-Excitation in Metal Cutting 560<br>9.6.3 The Condition for the Limit of Stability of Chatter 563<br>9.6.4 Analyzing Stability of a Boring Bar 565<br>9.6.5 Another Way of Deriving the Limit of Stability, Using the Nyquist Criterion 568<br>9.6.6 Time Domain Simulation of Chatter in Turning 570 Example 9.13 Simulation of Chatter in Turning 573<br>9.6.7 Chatter in Milling 575<br>9.7 Designing Machine-Tool Structures for High Stability 579<br>9.8 Effect of Cutting Conditions on Stability 586<br>9.9 Case Study: High-Speed Milling (HSM) Machine for Aluminum Aircraft Parts 594<br>9.9.1 High Speed Milling in General: Operations with a Lack of Stiffness 594<br>9.9.2 Developing HSM Machine for Aluminum Aircraft Parts 598 References 604 Questions 605 Problems 606<br> <br>Chapter 10 Automation 611<br>10.1 Automation of Machine Tools 613<br>Table 10.1 Actions to Automate and Devices to Use 613 10.1.1 Rigid and Flexible Automation 616<br>10.2 Machine Tools with Rigid Automation 618<br>10.2.1 Single-Spindle Automatic Lathes 618<br>10.2.2 Multispindle Automatic Lathes 622<br>10.2.3 Dial-Index Machines and Transfer Lines 625<br>10.3 Numerically Controlled Machine Tools 628<br>10.3.1 Basic Operation 628<br>10.3.2 Adaptive Control 633<br>10.3.3 Turning Centers 634<br>10.3.4 Machining Centers 635<br>10.4 Computerized, Flexible Manufacturing Systems 639<br>10.5 Positional Servomechanism: Review 647<br>10.5.1 Characteristics of the Servomotor 648<br>10.5.2 Step Input Response of the Servomotor 650<br>10.5.3 Time-Domain Simulation of the Servomotor 653<br>10.5.4 The Positional Servomechanism 654<br>10.5.5 Step Input Response of the Positional Servo 656<br>10.5.6 Time-Domain Simulation of the Positional Servo 657 Example 10.1 Performance of Positional Servos 658 Table 10.2 Parameters of the Four Test Cases 659<br>10.5.7 Response to a Ramp Input of the Positional Servo 659<br>10.6 Errors of Two-Dimensional Tool Path 667 Example 10.2 The Velocity Lag 667 Example 10.3 Ramp Input Response: Overshoot on<br>Stopping a Motion 662<br>Example 10.4 Two-Coordinate Motions: Corner Motion 664 Example 10.5 Effect of the Dead Zone 666 Example 10.6 Distortions of a Continuous Path 667<br>10.7 Adaptive Control for Constant Force in Milling 674<br>10.7.1 Analysis of Stability 674<br>Example 10.7 Limit of Stability of the Adaptive Control System 677 Example 10.8 Simulation of a Stable and an Unstable A/C System 678<br>10.7.2 Summary of Analyses of Numerical and Adaptive Control 687<br>10.8 Positional Servo Driving a Spring-Mass System 687 1<br>10.8.1 Two Basic Specifications: MT and ROB 687 I<br>10.8.2 The Two Basic Alternatives, A and B 682<br>10.8.3 The "Machine Tool" Case with SMD System in the Feedback Loop: MT/A 683<br>Example 10.9 Limit of Stability: The "Machine Tool" Case: MT/A 685 Example 10.10 Response To a Ramp Command of the Case MT/A (SMD System in the Loop) 687<br>10.8.4 Flexibility Outside of the Loop: Case MT/B 687 *<br>10.8.5 The "Robot" Case with SMD System within the Loop: ROB/A 689 Example 10.11 Limit of Stability of the Robot Case: ROB/A 689<br>İ<br> <br>10.8.6 Accelerometric Feedback Applied To the ROB/A System 691 Example 10.12 Using Accelerometer Feedback 692 Example 10.13 The "Robot Arm": Configuration B 693<br>10.9 Feedforward Compensation 694<br>10.9.1 Ideal Servodrive 694<br>10.9.2 Real Servodrive 697<br>Example 10.14 Feedforward Compensation in One Coordinate 700<br>10.9.3 Numerical Derivation of the Feedforward Compensation 707<br>Example 10.15 Using Numerical Derivation of the Feedforward Command:<br>Motion in One Coordinate 703 Example 10.16 Feedforward Compensation for Constant Jerk Motion 704<br>10.10 Simplified Robot Kinematics and Dynamics 709<br>10.10.1 Introduction: Types of Robots and Their Uses 709<br>10.10.2 Simplified Kinematics 775<br>10.10.3 Dynamics of the 2D Polar Case 777<br>Example 10.17 Feedforward Compensation in Two Dimensions 718<br>10.11 Conclusion 723 References 724 Questions 724 Problems 725<br>PART 4 Assembly and Nontraditional Processes 733<br>Chapter 11 Assembly: Material Handling and Welding 735<br>11.1 Introduction 735<br>11.2 Material Handling 737<br>11.3 Mechanical Joining 743<br>11.4 Assembly 746<br>11.5 Design for Assembly 756<br>11.6 Welding Processes 757<br>11.6.1 Introduction 757<br>11.6.2 Oxyacetylene Welding 762<br>11.6.3 Arc Welding Processes 764<br>11.6.4 Other Welding Processes 775 11.1 Control of the Arc 784<br>11.7.1 Melting Rates 754<br>Table 11.1 Melting Rate Coefficients 785<br>11.7.2 Self Regulation of the Arc in SMAW and GMAW 7S7<br>Example 11.1 SMAW, GMAW, SAW.

Step Change A/i 797<br>Example 11.2 Step Change A/: GMAW, Const e 792<br>:,,." 11.7.3 Servo Control in SAW 793<br>Example 11.3 Servo Control of SAW 795<br>Example 11A Servo Control of SAW: Effect of a Change of the<br>Gap M 799 11.7.4 Time Domain Simulation 799<br>Example 11.5 Servo Control of SAW 800<br> <br>11.8 Heat Transfer in Arc Welding 803<br>11.8.1 Continuous Field Solution: Thick Plate Formulation 803 Example 11.6 Temperature Profile Along the Y-Axis 805 Example 11.7 Temperature Profiles for Three Different Materials 806 Table 11.2 Thermal Parameters of Three Materials 806 Example 11.8 Heat Input Versus Welding Speed for Three Materials 808<br>11.8.2 Gradients: Cooling Rates 809<br>11.8.3 The 2D Case: The "Thin Plate" Line Heat Source q" 810 Example 11.9 Temperature Profiles for the Thin Plate 811 Example 11.10 Heat Energy per Unit Length Versus Welding Speed for the Thin Plate 812<br>11.8.4 The Finite Difference Approach: Thin Plate (2D) 813<br>Example 11.11 Using the Finite-Difference Method to Compute Temperature Fields 816<br>11.9 Residual Stresses and Distortions 822 References 828 Questions 829 Problems 830<br>Chapter 12 Nontraditional Processes 833<br>12.1 Introduction 833<br>12.2 Ultrasonic Machining (USM) 836<br>12.3 Water Jet Cutting (WJC) 838<br>Table 12.1 Performance of WJC for Various Materials 839<br>12A Electrochemical Machining (ECM) 839<br>12.4.1 Metal Removal Rate: Working Gap 841<br>Table 12.2 Specific Volume Vs for Selected Materials 842 Example 12.1 Transient Gap in ECM 844 Example 12.2 Electrolyte Flow 845<br>12.5 Chemical Machining (CHM), Photochemical Machining (PCM) 853 Table 12.3 Maskants and Etchants 854<br>12.6 Electro-Discharge Machining (EDM) 859<br>Table 12.4 Comparison of Dielectric Fluids for Brass Electrodes and<br>Tool-Steel Workpieces 861 Table 12.5 Comparison of Tool Materials 861<br>12.7 Laser Beam Machining (LBM) 864<br>Table 12.6 Operational Comparison of CO2, Nd:YAG, and<br>Excimer Lasers 868<br>Example 12.3 Power in Laser Drilling 868<br>Table 12.7 Physical and Thermal Properties of Selected Metals 869 Table 12.8 High-Power Laser Cutting 875<br>12.8 Electron Beam Machining (EBM) 875<br>Table 12.9 Holes Drilled by EBM in Various Materials 577 Table 12.10 Slot Cutting by EBM in Various Materials 877 Example 12.4 Power in EBM Cutting <S77<br>12.9 Oxygen Cutting (OC) 879 12.10 Plasma Arc Cutting (PAC) 881<br> <br>12.11 Electronics Manufacturing 882<br>12.12 Additive CNC Manufacturing (Rapid Prototyping) 889<br>12.12.1 Rapid Modeling 890<br>12.12.2 Rapid Tooling 897<br>12.13 Conclusion 903 References 904 Questions 905 Problems 907 Index 909<br>

Available:*

Library
Material Type
Item Barcode
Shelf Number
Status
Searching...
Book 049632 670.42 TLUm 2000 k.1
Searching...

On Order