Search Results for Geometry, Analytic. - Narrowed by: Measure and Integration. SirsiDynix Enterprise http://librarycatalog.yyu.edu.tr/client/en_US/default/default/qu$003dGeometry$00252C$002bAnalytic.$0026qf$003dSUBJECT$002509Subject$002509Measure$002band$002bIntegration.$002509Measure$002band$002bIntegration.$0026ps$003d300?dt=list 2025-02-13T15:05:47Z Geometry and Analysis of Fractals Hong Kong, December 2012 ent://SD_ILS/0/SD_ILS:168957 2025-02-13T15:05:47Z 2025-02-13T15:05:47Z by&#160;Feng, De-Jun. editor.<br/><a href="https://doi.org/10.1007/978-3-662-43920-3">https://doi.org/10.1007/978-3-662-43920-3</a><br/>Format:&#160;Electronic Resources<br/> Sub-Riemannian Geometry and Optimal Transport ent://SD_ILS/0/SD_ILS:164019 2025-02-13T15:05:47Z 2025-02-13T15:05:47Z by&#160;Rifford, Ludovic. author.<br/><a href="https://doi.org/10.1007/978-3-319-04804-8">https://doi.org/10.1007/978-3-319-04804-8</a><br/>Format:&#160;Electronic Resources<br/> Geometric Measure Theory and Real Analysis ent://SD_ILS/0/SD_ILS:177893 2025-02-13T15:05:47Z 2025-02-13T15:05:47Z by&#160;Ambrosio, Luigi. editor.<br/><a href="https://doi.org/10.1007/978-88-7642-523-3">https://doi.org/10.1007/978-88-7642-523-3</a><br/>Format:&#160;Electronic Resources<br/> Groupoid Metrization Theory With Applications to Analysis on Quasi-Metric Spaces and Functional Analysis ent://SD_ILS/0/SD_ILS:154581 2025-02-13T15:05:47Z 2025-02-13T15:05:47Z by&#160;Mitrea, Dorina. author.<br/><a href="https://doi.org/10.1007/978-0-8176-8397-9">https://doi.org/10.1007/978-0-8176-8397-9</a><br/>Format:&#160;Electronic Resources<br/> Real Analysis: Measures, Integrals and Applications ent://SD_ILS/0/SD_ILS:143987 2025-02-13T15:05:47Z 2025-02-13T15:05:47Z by&#160;Makarov, Boris. author.<br/><a href="https://doi.org/10.1007/978-1-4471-5122-7">https://doi.org/10.1007/978-1-4471-5122-7</a><br/>Format:&#160;Electronic Resources<br/> Fractal Geometry, Complex Dimensions and Zeta Functions Geometry and Spectra of Fractal Strings ent://SD_ILS/0/SD_ILS:161538 2025-02-13T15:05:47Z 2025-02-13T15:05:47Z by&#160;Lapidus, Michel L. author.<br/><a href="https://doi.org/10.1007/978-1-4614-2176-4">https://doi.org/10.1007/978-1-4614-2176-4</a><br/>Format:&#160;Electronic Resources<br/> Gradient Flows In Metric Spaces and in the Space of Probability Measures ent://SD_ILS/0/SD_ILS:165298 2025-02-13T15:05:47Z 2025-02-13T15:05:47Z by&#160;Ambrosio, Luigi. author.<br/><a href="https://doi.org/10.1007/978-3-7643-8722-8">https://doi.org/10.1007/978-3-7643-8722-8</a><br/>Format:&#160;Electronic Resources<br/> Geometric Integration Theory ent://SD_ILS/0/SD_ILS:141419 2025-02-13T15:05:47Z 2025-02-13T15:05:47Z by&#160;Krantz, Steven G. author.<br/><a href="https://doi.org/10.1007/978-0-8176-4679-0">https://doi.org/10.1007/978-0-8176-4679-0</a><br/>Format:&#160;Electronic Resources<br/> Metric Structures for Riemannian and Non-Riemannian Spaces ent://SD_ILS/0/SD_ILS:154444 2025-02-13T15:05:47Z 2025-02-13T15:05:47Z by&#160;Gromov, Mikhail. author.<br/><a href="https://doi.org/10.1007/978-0-8176-4583-0">https://doi.org/10.1007/978-0-8176-4583-0</a><br/>Format:&#160;Electronic Resources<br/> Equidistribution in Number Theory, An Introduction ent://SD_ILS/0/SD_ILS:155234 2025-02-13T15:05:47Z 2025-02-13T15:05:47Z by&#160;Granville, Andrew. editor.<br/><a href="https://doi.org/10.1007/978-1-4020-5404-4">https://doi.org/10.1007/978-1-4020-5404-4</a><br/>Format:&#160;Electronic Resources<br/> Fractal Geometry, Complex Dimensions and Zeta Functions Geometry and Spectra of Fractal Strings ent://SD_ILS/0/SD_ILS:152945 2025-02-13T15:05:47Z 2025-02-13T15:05:47Z by&#160;Lapidus, Michel L. author.<br/><a href="https://doi.org/10.1007/978-0-387-35208-4">https://doi.org/10.1007/978-0-387-35208-4</a><br/>Format:&#160;Electronic Resources<br/> Selected Topics in Convex Geometry ent://SD_ILS/0/SD_ILS:136698 2025-02-13T15:05:47Z 2025-02-13T15:05:47Z by&#160;Moszynska, Maria. author.<br/><a href="https://doi.org/10.1007/0-8176-4451-2">https://doi.org/10.1007/0-8176-4451-2</a><br/>Format:&#160;Electronic Resources<br/>