Skip to:Bottom
|
Content
Numerical partial differential equations: Finite difference methods için kapak resmi
Başlık:
Numerical partial differential equations: Finite difference methods
Yazar:
Thomas, J. W.
ISBN:
9780387979991
Ek Yazar:
Yayın Bilgisi:
New York : Springer Verlag , 1995.
Fiziksel Tanım:
436 s. ; 24 sm.
Özet:
NUMERICAL PARTIAL DIFFERENTIAL EQUATIONS<br>J. W. Thomas<br><br><br><br><br>Contents<br>Series Preface vii<br>Preface ix<br>0 Prelude 1<br>1 Introduction to Finite Differences 5<br>1.1 Introduction ........................... 5<br>1.2 Getting Started ......................... 6<br>1.2.1 Implementation ..................... 9<br>1.3 Consistency ........................... 10<br>1.3.1 Special Choice of Ax and Af ............. 13<br>1.4 Neumann Boundary Conditions ................ 14<br>1.5 Some Variations ........................ 16<br>1.5.1 Lower Order Terms .................. 16<br>1.5.2 Nonhomogeneous Equations and<br>Boundary Conditions ................. 17<br>1.5.3 A Higher Order Scheme ................ 18<br>1.6 Derivation of Difference Equations .............. 22<br>1.6.1 Neumann Boundary Conditions ............ 27<br>1.6.2 Cell Averaged Equations ................ 29<br>1.6.3 Cell Centered Grids .................. 32<br>1.6.4 Nonuniform Grids ................... 34<br> <br>2 Some Theoretical Considerations . 41<br>2.1 Introduction ........................... 41<br>2.2 Convergence........................... 41<br>2.2.1 Initial-Value Problems ................. 41<br>2.2.2 Initial-Boundary-Value Problems .......... 45<br>2.2.3 A Review of Linear Algebra .............. 48<br>2.2.4 Some Additional Convergence Topics ......... 54<br>2.3 Consistency ........................... 55<br>2.3.1 Initial-Value Problems ................. 55<br>2.3.2 Initial-Boundary-Value Problems .......... 65<br>2.4 Stability ............................. 73<br>2.4.1 Initial-Value Problems ................. 73<br>2.4.2 Initial-Boundary-Value Problems .......... 77<br>2.5 The Lax Theorem ....................... 79<br>2.5.1 Initial-Value Problems ................. 79<br>2.5.2 Initial-Boundary-Value Problems .......... 81<br>2.6 Computational Interlude I ................... 83<br>2.6.1 Review of Computational Results . .......... 83<br>2.6.2 HWO.0.1 ......................... 84<br>2.6.3 Implicit Schemes .................... 85<br>2.6.4 Neumann Boundary Conditions ............ 89<br>2.6.5 Derivation of Implicit Schemes ............ 93<br>3 Stability 97<br>3.1 Analysis of Stability ...................... 97<br>3.1.1 Initial-Value Problems ................. 97<br>3.1.2 Initial-Boundary-Value Problems .......... 112<br>3.2 Finite Fourier Series and Stability .............. 117<br>3.3 Gerschgorin Circle Theorem .................. 132<br>3.4 Computational Interlude II .................. 137<br>3.4.1 Review of Computational Results ........... 137<br>3.4.2 HWO.0.1 ......................... 139<br>4 Parabolic Equations - 147<br>4.1 Introduction ........................... 147<br>4.2 Two Dimensional Parabolic Equations ............ 148<br>4.2.1 Neumann Boundary Conditions ............ 151<br>4.2.2 Derivation of Difference Equations .......... 153<br>4.3 Convergence, Consistency, Stability .............. 156<br>4.3.1 Stability of Initial-Value Schemes . .......... 157<br>4.3.2 Stability of Initial-Boundary-Value Schemes .... 160<br>4.4 Alternating Direction Implicit Schemes ............ 164<br>4.4.1 Peaceman-Rachford Scheme .............. 165<br>4.4.2 Initial-Value Problems ................. 165<br>4.4.3 Initial-Boundary-Value Problems .......... 169<br> <br>4.4.4 Douglas-Rachford Scheme ............... 183<br>4.4.5 Nonhomogeneous ADI Schemes ............ 185<br>4.4.6 Three Dimensional Schemes .............. 190<br>4.5 Polar Coordinates ....................... 193<br>5 Hyperbolic Equations 205<br>5.1 Introduction ........................... 205<br>5.2 Initial-Value Problems ..................... 206<br>5.3 Numerical Solution of Initial-Value Problems ........ 209<br>5.3.1 One Sided Schemes ................... 210<br>5.3.2 Centered Scheme .................... 213<br>5.3.3 Lax-Wendroff Scheme ................. 213<br>5.3.4 More Explicit Schemes ................. 216<br>5.4 Implicit Schemes ........................ 216<br>5.4.1 One Sided Schemes ................... 216<br>5.4.2 Centered Scheme .................... 217<br>5.4.3 Lax-Wendroff Scheme ................. 218<br>5.4.4 Crank-Nicolson Scheme ................ 219<br>5.5 Initial-Boundary-Value Problems ............... 220<br>5.5.1 Periodic Boundary Conditions ............ 221<br>5.5.2 Dirichlet Boundary Conditions ............ 221<br>5.6 Numerical Solution of Initial-Boundary-Value Problems . . 223<br>5.6.1 Periodic Boundary Conditions ............ 223<br>5.6.2 Dirichlet Boundary Conditions ............ 229<br>5.7 The Courant-Friedrichs-Lewy Condition ........... 232<br>5.8 Two Dimensional Hyperbolic Equations ........... 239<br>5.8.1 Conservation Law Derivation ............. 239<br>5.8.2 Initial-Value Problems ................. 242<br>5.8.3 ADI Schemes ...................... 247<br>5.8.4 Courant-Friedrichs-Lewy Condition for<br>Two Dimensional Problems .............. 249<br>5.8.5 Two Dimensional Initial-Boundary-Value Problems 251<br>5.9 Computational Interlude III .................. 254<br>5.9.1 Review of Computational Results ........... 254<br>5.9.2 Convection-Diffusion Equations ............ 256<br>5.9.3 HWO.0.1 ......................... 257<br>5.9.4 HWO.0.2 ......................... 258<br>6 Systems of Partial Differential Equations 261<br>6.1 Introduction ........................... 261<br>6.2 Initial-Value Difference Schemes ............... 263<br>6.2.1 Flux Splitting ...................... 278<br>6.2.2 Implicit Schemes .................... 280<br>6.3 Initial-Boundary-Value Problems ............... 284<br>6.3.1 Boundary Conditions ................. 285<br> <br>6.3.2 Implementation ..................... 292<br>6.4 Multilevel Schemes ....................... 300<br>6.4.1 Scalar Multilevel Schemes ............... 300<br>6.4.2 Implementation of Scalar Multilevel Schemes .... 306<br>6.4.3 Multilevel Systems ................... 310<br>6.5 Higher Order Hyperbolic Equations .............. 312<br>6.5.1 Initial-Value Problems ................. 314<br>6.5.2 More ........................... 320<br>6.6 Courant-Friedrichs-Lewy Condition for Systems ....... 322<br>6.7 Two Dimensional Systems ................... 324<br>6.7.1 Initial-Value Problems ................. 325<br>6.7.2 Boundary Conditions ................. 333<br>6.7.3 Two Dimensional Multilevel Schemes ......... 338<br>6.8 A Consistent, Convergent, Unstable Difference Scheme? . . 340<br>6.9 Computational Interlude IV .................. 341<br>6.9.1 HWO.0.1 and HWO.0.2 ................. 341<br>6.9.2 HWO.0.3 ......................... 345<br>6.9.3 Parabolic Problems in Polar Coordinates ...... 348<br>6.9.4 An Alternate Scheme for Polar Coordinates ..... 353<br>7 Dispersion and Dissipation 359<br>7.1 Introduction ........................... 359<br>7.1.1 HW5.6.3 ......................... 359<br>7.1.2 HW5.6.5 ......................... 363<br>7.2 Dispersion and Dissipation for Partial<br>Differential Equations ..................... 363<br>7.3 Dispersion and Dissipation for Difference Equations .... 367<br>7.4 Dispersion Analysis for the Leapfrog Scheme ........ 386<br>7.5 More Dissipation ........................ 394<br>7.6 Artificial Dissipation ...................... 397<br>7.7 Modified Partial Differential Equation ............ 402<br>7.8 Discontinuous Solutions .................... 411<br>7.9 Computational Interlude V .................. 420<br>7.9.1 HWO.0.1 ...........................

421<br>7.9.2 HWO.0.3 ......................... 423<br>References 425<br>Index 427<br>

Mevcut:*

Library
Materyal Türü
Barkod
Yer Numarası
Durumu/İade Tarihi
Arıyor...
Book 049570 515.353 THOn 1995 k.1
Arıyor...

On Order

Go to:Top of Page