![Theoretical numerical analysis : a functional analysis framework için kapak resmi Theoretical numerical analysis : a functional analysis framework için kapak resmi](/client/assets/4.5.1/ctx/images/no_image.png)
Başlık:
Theoretical numerical analysis : a functional analysis framework
Yazar:
Atkinson, Kendall
ISBN:
9780387951423
Ek Yazar:
Yayın Bilgisi:
New York : Springer Verlag , 2001.
Fiziksel Tanım:
xvi, 450 s. : ill. ; 25 sm.
Seriler:
Texts in applied mathematics ; 39
Seri Başlığı:
Texts in applied mathematics ; 39
Genel Not:
Bibliyografik kaynakça ([436]-444 s.) ve indeks var.
Özet:
Contents<br>Series Preface vii<br>Preface ix<br>1 Linear Spaces 1<br>1.1 Linear spaces ........................ 1<br>1.2 Normed spaces ........................ 7<br>1.2.1 Convergence ..................... 9<br>1.2.2 Danach spaces .................... 11<br>1.2.3 Completion of normed spaces ........... 12<br>1.3 Inner product spaces .................... 18<br>1.3.1 Hubert spaces .................... 22<br>1.3.2 Orthogonality .................... 23<br>1.4 Spaces of continuously differentiable functions ...... 30<br>1.4.1 Holder spaces .................... 31<br>1.5 LP spaces ........................... 32<br>1.6 Compact sets ........................ 35<br>2 Linear Operators on Normed Spaces 38<br>2.1 Operators .......................... 39<br>2.2 Continuous linear operators ................ 41<br>2.2.1 £(V,W) as a Danach space . ............ 45<br>2.3 The geometric series theorem and its variants ...... 46<br>2.3.1 A generalization ................... 49<br>2.3.2 A perturbation result ................ 50<br>2.4 Some more results on linear operators ........... 55<br>2.4.1 An extension theorem ............... 55<br>2.4.2 Open mapping theorem ............... 57<br>2.4.3 Principle of uniform boundedness ......... 58<br>2.4.4 Convergence of numerical quadratures ...... 59<br>2.5 Linear functionals ...................... 62<br>2.5.1 An extension theorem for linear functionals ... 63<br>2.5.2 The Riesz representation theorem ......... 64<br>2.6 Adjoint operators ...................... 67<br>2.7 Types of convergence .................... 72<br>2.8 Compact linear operators ................. 73<br>2.8.1 Compact integral operators on C(D) ....... 74<br>2.8.2 Properties of compact operators .......... 76<br>2.8.3 Integral operators on I/2 (a, 6) ........... 78<br>2.8.4 The Fredholm alternative theorem ........ 79<br>2.8.5 Additional results on Fredholm<br>integral equations .................. 83<br>2.9 The resolvent operator ................... 87<br>2.9.1 -R(A) as a holomorphic function .......... 89<br>3 Approximation Theory 92<br>3.1 Interpolation theory ..................... 93<br>3.1.1 Lagrange polynomial interpolation ........ 94<br>3.1.2 Hermite polynomial interpolation ......... 98<br>3.1.3 Piecewise polynomial interpolation ........ 98<br>3.1.4 Trigonometric interpolation ............ 101<br>3.2 Best approximation ..................... 105<br>3.2.1 Convexity, lower semicontinuity .......... 105<br>3.2.2 Some abstract existence results .......... 107<br>3.2.3 Existence of best approximation .......... 110<br>3.2.4 Uniqueness of best approximation ......... Ill<br>3.3 Best approximations in inner product spaces ....... 113<br>3.4 Orthogonal polynomials .................. 117<br>3.5 Projection operators .................... 121<br>3.6 Uniform error bounds ................... 124<br>3.6.1 Uniform error bounds for L2-approximations . . . 126<br>3.6.2 Interpolatory projections and<br>their convergence .................. 128<br>4 Nonlinear Equations and Their Solution by Iteration 131<br>4.1 The Banach fixed-point theorem .............. 131<br>4.2 Applications to iterative methods ............. 135<br>4.2.1 Nonlinear equations ................. 135<br>4.2.2 Linear systems ................... 136<br>4.2.3 Linear and nonlinear integral equations ...... 139<br>4.2.4 Ordinary differential equations in<br>Banach spaces .................... 143<br>4.3 Differential calculus for nonlinear operators ........ 146<br>4.3.1 Frechet and Gateaux derivatives .......... 146<br>4.3.2 Mean value theorems ................ 149<br>4.3.3 Partial derivatives .................. 151<br>4.3.4 The Gateaux derivative and<br>convex minimization ................ 152<br>4.4 Newton’s method ...................... 154<br>4.4.1 Newton’s method in a Banach space ....... 155<br>4.4.2 Applications ..................... 157<br>4.5 Completely continuous vector fields ............ 159<br>4.5.1 The rotation of a completely continuous<br>vector field ...................... 161<br>4.6 Conjugate gradient iteration ................ 162<br>Finite Difference Method 171<br>5.1 Finite difference approximations .............. 171<br>5.2 Lax equivalence theorem .................. 177<br>5.3 More on convergence .................... 186<br>Sobolev Spaces 193<br>6.1 Weak derivatives ...................... 193<br>6.2 Sobolev spaces ........................ 198<br>6.2.1 Sobolev spaces of integer order .......... 199<br>6.2.2 Sobolev spaces of real order ............ 204<br>6.2.3 Sobolev spaces over boundaries .......... 206<br>6.3 Properties .......................... 207<br>6.3.1 Approximation by smooth functions ........ 207<br>6.3.2 Extensions ...................... 208<br>6.3.3 Sobolev embedding theorems ........... 208<br>6.3.4 Traces ........................ 210<br>6.3.5 Equivalent norms .................. 211<br>6.3.6 A Sobolev quotient space .............. 215<br>6.4 Characterization of Sobolev spaces via the<br>Fourier transform ...................... 219<br>6.5 Periodic Sobolev spaces ................... 222<br>6.5.1 The dual space ................... 225<br>6.5.2 Embedding results ................. 226<br>6.5.3 Approximation results ............... 227<br>6.5.4 An illustrative example of an operator ...... 228<br>6.5.5 Spherical polynomials and<br>spherical harmonics ................. 229<br>6.6 Integration by parts formulas ............... 234<br>7 Variational Formulations of Elliptic Boundary<br>Value Problems 238<br>7.1 A model boundary value problem ............. 239<br>7.2 Some general results on existence and uniqueness .... 241<br>7.3 The Lax-Milgram lemma .................. 244<br>7.4 Weak formulations of linear elliptic boundary<br>value problems ........................ 248<br>7.4.1 Problems with homogeneous Dirichlet<br>boundary conditions ................ 249<br>7.4.2 Problems with non-homogeneous Dirichlet<br>boundary conditions ................ 249<br>7.4.3 Problems with Neumann<br>boundary conditions ................ 251<br>7.4.4 Problems with mixed boundary conditions .... 253<br>7.4.5 A general linear second-order elliptic<br>boundary value problem .............. 254<br>7.5 A boundary value problem of linearized elasticity .... 257<br>7.6 Mixed and dual formulations ................ 260<br>7.7 Generalized Lax-Milgram lemma.............. 264<br>7.8 A nonlinear problem .................... 265<br>8 The Galerkin Method and Its Variants 270<br>8.1 The Galerkin method .................... 270<br>8.2 The Petrov-Galerkin method ................ 276<br>8.3 Generalized Galerkin method ............... 278<br>9 Finite Element Analysis 281<br>9.1 One-dimensional examples ................. 283<br>9.1.1 Linear elements for a second-order problem . . . 283<br>9.1.2 High-order elements and the<br>condensation technique ............... 286<br>9.1.3 Reference element technique,<br>non-conforming method .............. 288<br>9.2 Basics of the finite element method ............ 291<br>9.2.1 Triangulation .................... 291<br>9.2.2 Polynomial spaces on the reference elements . . . 293<br>9.2.3 Affine-equivalent finite elements .......... 295<br>9.2.4 Finite element spaces ................ 296<br>9.2.5 Interpolation .....................
298<br>9.3 Error estimates of finite element interpolations ...... 300<br>9.3.1 Interpolation error estimates on the<br>reference element .................. 300<br>9.3.2 Local interpolation error estimates ........ 301<br>9.3.3 Global interpolation error estimates ........ 304<br>9.4 Convergence and error estimates .............. 308<br>10 Elliptic Variational Inequalities and<br>Their Numerical Approximations 313<br>10.1 Introductory examples ................... 313<br>10.2 Elliptic variational inequalities of the first kind ...... 319<br>10.3 Approximation of EVIs of the first kind .......... 323<br>10.4 Elliptic variational inequalities of the second kind .... 326<br>10.5 Approximation of EVIs of the second kind ........ 331<br>10.5.1 Regularization technique .............. 333<br>10.5.2 Method of Lagrangian multipliers ......... 335<br>10.5.3 Method of numerical integration .......... 337<br>11 Numerical Solution of Fredholm Integral Equations<br>of the Second Kind 342<br>11.1 Projection methods: General theory ............ 343<br>11.1.1 Collocation methods ................ 343<br>11.1.2 Galerkin methods .................. 345<br>11.1.3 A general theoretical framework .......... 346<br>11.2 Examples........................... 351<br>11.2.1 Piecewise linear collocation ............. 351<br>11.2.2 Trigonometric polynomial collocation ....... 354<br>11.2.3 A piecewise linear Galerkin method ........ 356<br>11.2.4 A Galerkin method with<br>trigonometric polynomials ............. 358<br>11.3 Iterated projection methods ................ 362<br>11.3.1 The iterated Galerkin method ........... 364<br>11.3.2 The iterated collocation solution ......... 366<br>11.4 The Nystrom method .................... 372<br>11.4.1 The Nystrom method for continuous<br>kernel functions ................... 373<br>11.4.2 Properties and error analysis of the<br>Nystrom method .................. 376<br>11.4.3 Collectively compact<br>operator approximations .............. 383<br>11.5 Product integration ..................... 385<br>11.5.1 Error analysis .................... 388<br>11.5.2 Generalizations to other kernel functions ..... 390<br>11.5.3 Improved error results for special kernels ..... 392<br>11.5.4 Product integration with graded meshes ..... 392<br>11.5.5 The relationship of product integration and<br>collocation methods ................. 396<br>11.6 Projection methods for nonlinear equations ........ 398<br>11.6.1 Linearization .................... 398<br>11.6.2 A homotopy argument ............... 401<br>11.6.3 The approximating<br>finite-dimensional problem ............. 402<br>12 Boundary Integral Equations 405<br>12.1 Boundary integral equations ................ 406<br>12.1.1 Green’s identities and representation formula . . 407<br>12.1.2 The Kelvin transformation and<br>exterior problems .................. 409<br>12.1.3 Boundary integral equations of direct type . . . 413<br>12.2 Boundary integral equations of the second kind ..... 419<br>12.2.1 Evaluation of the double layer potential ..... 421<br>12.2.2 The exterior Neumann problem .......... 425<br>12.3 A boundary integral equation of the first kind ...... 431<br>12.3.1 A numerical method ................ 433<br>References 436<br>Index 445<br>
Mevcut:*
Library | Materyal Türü | Barkod | Yer Numarası | Durumu/İade Tarihi |
---|---|---|---|---|
Arıyor... | Book | 049567 | 515 ATKt 2001 k.1 | Arıyor... |