Skip to:Bottom
|
Content
Likelihood, Bayesian and MCMC methods in quantitative genetics için kapak resmi
Başlık:
Likelihood, Bayesian and MCMC methods in quantitative genetics
Yazar:
Sorensen, Daniel
ISBN:
9780387954400
Ek Yazar:
Yayın Bilgisi:
New York : Springer Verlag , 2002.
Fiziksel Tanım:
740 s. ; 24 sm.
Özet:
Contents<br>Preface<br>I Review of Probability and Distribution Theory 1<br>1 Probability and Random Variables 3<br>1.1 Introduction ........................... 3<br>1.2 Univariate Discrete Distributions ............... 4<br>1.2.1 The Bernoulli and Binomial Distributions ...... 7<br>1.2.2 The Poisson Distribution ............... 10<br>1.2.3 Binomial Distribution: Normal Approximation ... 12<br>1.3 Univariate Continuous Distributions ............. 13<br>1.3.1 The Uniform, Beta, Gamma, Normal,<br>and Student-t Distributions .............. 18<br>1.4 Multivariate Probability Distributions ............ 29<br>1.4.1 The Multinomial Distribution ............. 37<br>1.4.2 The Dirichlet Distribution ............... 40<br>1.4.3 The d-Dimensional Uniform Distribution ...... 40<br>1.4.4 The Multivariate Normal Distribution ........ 41<br>1.4.5 The Chi-square Distribution .............. 53<br>1.4.6 The Wishart and Inverse Wishart Distributions ... 55<br>1.4.7 The Multivariate-t Distribution ............ 60<br>1.5 Distributions with Constrained Sample Space ........ 62<br>1.6 Iterated Expectations ..................... 67<br> <br>2 Functions of Random Variables 77<br>2.1 Introduction ........................... 77<br>2.2 Functions of a Single Random Variable ............ 78<br>2.2.1 Discrete Random Variables .............. 78<br>2.2.2 Continuous Random Variables ............ 79<br>2.2.3 Approximating the Mean and Variance ....... 89<br>2.2.4 Delta Method ...................... 93<br>2.3 Functions of Several Random Variables ............ 95<br>2.3.1 Linear Transformations ................ Ill<br>2.3.2 Approximating the Mean and Covariance Matrix . . 114<br>II Methods of Inference 117<br>3 An Introduction to Likelihood Inference 119<br>3.1 Introduction ........................... 119<br>3.2 The Likelihood Function .................... 120<br>3.3 The Maximum Likelihood Estimator ............. 122<br>3.4 Likelihood Inference in a Gaussian Model .......... 125<br>3.5 Fisher’s Information Measure ................. 128<br>3.5.1 Single Parameter Case ................. 128<br>3.5.2 Alternative Representation of Information ...... 131<br>3.5.3 Mean and Variance of the Score Function ...... 134<br>3.5.4 Multiparameter Case .................. 135<br>3.5.5 Cramer-Rao Lower Bound .............. 138<br>3.6 Sufficiency ............................ 142<br>3.7 Asymptotic Properties: Single Parameter Models ...... 143<br>3.7.1 Probability of the Data Given the Parameter .... 144<br>3.7.2 Consistency ....................... 146<br>3.7.3 Asymptotic Normality and Efficiency ......... 147<br>3.8 Asymptotic Properties: Multiparameter Models ....... 152<br>3.9 Functional Invariance ..................... 153<br>3.9.1 Illustration of Functional Invariance ......... 153<br>3.9.2 Invariance in a Single Parameter Model ....... 157<br>3.9.3 Invariance in a Multiparameter Model ........ 159<br>4 Further Topics in Likelihood Inference 161<br>4.1 Introduction ........................... 161<br>4.2 Computation of Maximum Likelihood Estimates ...... 162<br>4.3 Evaluation of Hypotheses ................... 166<br>4.3.1 Likelihood Ratio Tests ................. 166<br>4.3.2 Confidence Regions ................... 177<br>4.3.3 Wald’s Test ....................... 179<br>4.3.4 Score Test ........................ 179<br>4.4 Nuisance Parameters ...................... 181<br> <br>Contents xiii<br>4.4.1 Loss of Efficiency Due to Nuisance Parameters . . . 182<br>4.4.2 Marginal Likelihoods .................. 182<br>4.4.3 Profile Likelihoods ................... 186<br>4.5 Analysis of a Multinomial Distribution ............ 190<br>4.5.1 Amount of Information per Observation ....... 199<br>4.6 Analysis of Linear Logistic Model .............. 202<br>4.6.1 The Logistic Distribution ............... 204<br>4.6.2 Likelihood Function under Bernoulli Sampling . . . 204<br>4.6.3 Mixed Effects Linear Logistic Model ......... 208<br>5 An Introduction to Bayesian Inference 211<br>5.1 Introduction ........................... 211<br>5.2 Bayes Theorem: Discrete Case ................. 214<br>5.3 Bayes Theorem: Continuous Case ............... 223<br>5.4 Posterior Distributions ..................... 235<br>5.5 Bayesian Updating ....................... 249<br>5.6 Features of Posterior Distributions .............. 257<br>5.6.1 Posterior Probabilities ................. 258<br>5.6.2 Posterior Quantiles ................... 262<br>5.6.3 Posterior Modes .................... 264<br>5.6.4 Posterior Mean Vector and Covariance Matrix . . . 280<br>6 Bayesian Analysis of Linear Models 287<br>6.1 Introduction........................... 287<br>6.2 The Linear Regression Model ................. 287<br>6.2.1 Inference under Uniform Improper Priors ...... 288<br>6.2.2 Inference under Conjugate Priors ........... 297<br>6.2.3 Orthogonal Parameterization of the Model ..... 307<br>6.3 The Mixed Linear Model.................... 313<br>6.3.1 Bayesian View of the Mixed Effects Model ...... 313<br>6.3.2 Joint and Conditional Posterior Distributions .... 317<br>6.3.3 Marginal Distribution of Variance Components . . . 322<br>6.3.4 Marginal Distribution of Location Parameters .... 323<br>7 The Prior Distribution and Bayesian Analysis 327<br>7.1 Introduction ........................... 327<br>7.2 An Illustration of the Effect of Priors on Inferences ..... 328<br>7.3 A Rapid Tour of Bayesian Asymptotics ........... 330<br>7.3.1 Discrete Parameter ................... 330<br>7.3.2 Continuous Parameter ................. 331<br>7.4 Statistical Information and Entropy ............. 334<br>7.4.1 Information ....................... 334<br>7.4.2 Entropy of a Discrete Distribution .......... 337<br>7.4.3 Entropy of a Joint and Conditional Distribution . . 340<br>7.4.4 Entropy of a Continuous Distribution ........ 341<br> <br>7.4.5 Information about a Parameter ............ 346<br>7.4.6 Fisher’s Information Revisited ............ 351<br>7.4.7 Prior and Posterior Discrepancy ........... 353<br>7.5 Priors Conveying Little Information ............. 356<br>7.5.1 The Uniform Prior ................... 356<br>7.5.2 Other Vague Priors ................... 358<br>7.5.3 Maximum Entropy Prior Distributions ........ 367<br>7.5.4 Reference Prior Distributions ............. 379<br>8 Bayesian Assessment of Hypotheses and Models 399<br>8.1 Introduction ........................... 399<br>8.2 Bayes Factors .......................... 400<br>8.2.1 Definition ........................ 400<br>8.2.2 Interpretation ...................... 402<br>8.2.3 The Bayes Factor and Hypothesis Testing ...... 403<br>8.2.4 Influence of the Prior Distribution .......... 412<br>8.2.5 Nested Models ..................... 414<br>8.2.6 Approximations to the Bayes Factor ......... 418<br>8.2.7 Partial and Intrinsic Bayes Factors .......... 422<br>8.3 Estimating the Marginal Likelihood ............. 424<br>8.4 Goodness of Fit and Model Complexity ........... 429<br>8.5 Goodness of Fit and Predictive Ability of a Model ..... 433<br>8.5.1 Analysis of Residuals .................. 434<br>8.5.2 Predictive Ability and Predictive Cross-Validation . 436<br>8.6 Bayesian Model Averaging ................... 439<br>8.6.1 General ......................... 439<br>8.6.2 Definitions ....................... 440<br>8.6.3 Predictive Ability of BMA ............... 441<br>9 Approximate Inference Via the EM Algorithm 443<br>9.1 Introduction ...........................

443<br>9.2 Complete and Incomplete Data ................ 444<br>9.3 The EM Algorithm ....................... 445<br>9.3.1 Form of the Algorithm ................. 445<br>9.3.2 Derivation ........................ 445<br>9.4 Monotonie Increase of lnp(0

Mevcut:*

Library
Materyal Türü
Barkod
Yer Numarası
Durumu/İade Tarihi
Arıyor...
Book 049555 575.60727 SORl 2002 k.1
Arıyor...

On Order

Go to:Top of Page