Başlık:
A Course in functional analysis
Yazar:
Conway, John B.
ISBN:
9780387972459
Ek Yazar:
Basım Bilgisi:
2nd ed.
Yayın Bilgisi:
New York : Springer - Verlag , 1990.
Fiziksel Tanım:
XVI, 399 s. ; 24 sm.
Seriler:
Graduate texts in mathematics ; 96
Seri Başlığı:
Graduate texts in mathematics ; 96
Genel Not:
Includes bibliographical references
Özet:
Graduate texts in Mathematics<br>John B. Conway<br><br><br><br>Contents<br>Preface vii<br>Preface to the Second Edition xi<br>CHAPTERI<br>Hubert Spaces<br>§1. Elementary Properties and Examples 1<br>§2. Orthogonality 7<br>§3. The Riesz Representation Theorem 11<br>§4. Orthonormal Sets of Vectors and Bases 14<br>§5. Isomorphic Hubert Spaces and the Fqurier Transform for the Circle 19<br>§6. The Direct Sum of Hubert Spaces 23<br>CHAPTER II<br>Operators on Hubert Space<br>§1. Elementary Properties and Examples 26<br>§2. The Adjoint of an Operator 31<br>§3. Projections and Idempotents; Invariant and Reducing Subspaces 36<br>§4. Compact Operators 41<br>§5.* The Diagonalization of Compact Self-Adjoint Operators 46<br>§6.* An Application: Sturm-Liouville Systems 49<br>§7.* The Spectral Theorem and Functional Calculus for Compact Normal<br>Operators 54<br>§8.* Unitary Equivalence for Compact Normal Operators 60<br>CHAPTER III<br>Banach Spaces<br>§1. Elementary Properties and Examples 63<br>§2. Linear Operators on Normed Spaces 67<br> <br>§3. Finite Dimensional Normed Spaces 69<br>§4. Quotients and Products of Normed Spaces 70<br>§5. Linear Functionals 73<br>§6. The Hahn-Banach Theorem 77<br>§7.* An Application: Banach Limits 82<br>§8.* An Application: Runge’s Theorem 83<br>§9.* An Application: Ordered Vector Spaces 86<br>§10. The Dual of a Quotient Space and a Subspace 88<br>§11. Reflexive Spaces 89<br>§12. The Open Mapping and Closed Graph Theorems 90<br>§13. Complemented Subspaces of a Banach Space 93<br>§14. The Principle of Uniform Boundedness 95<br>CHAPTER IV Locally Convex Spaces<br>§1. Elementary Properties and Examples 99<br>§2. Metrizable and Normable Locally Convex Spaces 105<br>§3. Some Geometric Consequences of the Hahn-Banach Theorem 108<br>§4.* Some Examples of the Dual Space of a Locally Convex Space 114<br>§5.* Inductive Limits and the Space of Distributions 116<br>CHAPTER V<br>Weak Topologies<br>§1. Duality 124<br>§2. The Dual of a Subspace and a Quotient Space 128<br>§3. Alaoglu’s Theorem 130<br>§4. Reflexivity Revisited 131<br>§5. Separability and Metrizability 134<br>§6.* An Application: The Stone-Ğech Compactification 137<br>§7. The Krein-Milman Theorem 141<br>§8. An Application: The Stone-Weierstrass Theorem 145<br>§9.* The Schauder Fixed Point Theorem 149<br>§10.* The Ryll-Nardzewski Fixed Point Theorem 151<br>§11.* An Application: Haar Measure on a Compact Group 154<br>§12.* The Krein-Smulian Theorem 159<br>§13.* Weak Compactness 163<br>CHAPTER VI<br>Linear Operators on a Banach Space<br>§1. The Adjoint of a Linear Operator 166<br>§2.* The Banach-Stone Theorem 171<br>§3. Compact Operators 173<br>§4. Invariant Subspaces 178<br>§5. Weakly Compact Operators 183<br> <br>HAPTER VII<br>anach Algebras and Spectral Theory for<br>perators on a Banach Space<br>1. Elementary Properties and Examples 187<br>2. Ideals and Quotients 191<br>3. The Spectrum 195<br>4. The Riesz Functional Calculus 199<br>5. Dependence of the Spectrum on the Algebra 205<br>6. The Spectrum of a Linear Operator 208<br>7. The Spectral Theory of a Compact Operator 214<br>8. Abelian Banach Algebras 218<br>9.* The Group Algebra of a Locally Compact Abelian Group 223<br>HAPTER VIII<br>"-Algebras ’’-’<br>1. Elementary Properties and Examples 232<br>2. Abelian C*-Algebras and the Functional Calculus in C*-Algebras 236<br>3. The Positive Elements in a C*-Algebra 240<br>4.* Ideals and Quotients of C*-Algebras 245<br>5.* Representations of C*-Algebras and the Gelfand-Naimark-Segal<br>Construction 248<br>HAPTER IX<br>ormal Operators on Hubert Space<br>1. Spectral Measures and Representations of Abelian C*-Algebras 255<br>2. The Spectral Theorem 262<br>3. Star-Cyclic Normal Operators 268<br>4. Some Applications of the Spectral Theprem 271<br>5. Topologies on 3S(tf) 274<br>6. Commuting Operators 276<br>7. Abelian von Neumann Algebras 281<br>8. The Functional Calculus for Normal Operators:<br>The Conclusion of the Saga 285<br>9. Invariant Subspaces for Normal Operators 290<br>0. Multiplicity Theory for Normal Operators:<br>A Complete Set of Unitary Invariants 293<br>HAPTER X nbounded Operators<br>il. Basic Properties and Examples 303<br>>2. Symmetric and Self-Adjoint Operators 308<br>’3. The Cayley Transform 316<br>4. Unbounded Normal Operators and the Spectral Theorem 319<br>;5. Stone’s Theorem 327<br>>6. The Fourier Transform and Differentiation 334<br>>7. Moments 343<br> <br>CHAPTER XI<br>Fredholm Theory<br>§1. The Spectrum Revisited 347<br>§2. Fredholm Operators 349<br>§3. The Fredholm Index 352<br>§4. The Essential Spectrum 358<br>§5. The Components of y& 362<br>§6. A Finer Analysis of the Spectrum 363<br>APPENDIX A<br>Preliminaries<br>§1. Linear Algebra 369<br>§2. Topology 371<br>APENDIX B<br>The Dual of U(^i) 375<br>APPENDIX C<br>The Dual of C0(X) 378<br>Bibliography 384<br>List of Symbols 391<br>Index l 395<br>
Konu Terimi:
Mevcut:*
Library | Materyal Türü | Barkod | Yer Numarası | Durumu/İade Tarihi |
---|---|---|---|---|
Arıyor... | Book | 049584 | 515.7 CONc 1990 k.2 | Arıyor... |